
143 

Advanced Human Activity Recognition Using Pose 

Estimation and Deep Learning Techniques 

Haider Rasheed Hassan 

Computer department 

University of Diyala  

Diyala, Iraq 
scicompms222307@uodiyala.edu.iq  

Dheyab Salman Ibrahim  

Computer department 

University of Diyala  

Diyala, Iraq 

Ziyad Tariq Mustafa Al-Ta'i 

Computer department 

University of Diyala  

Diyala, Iraq 

 
Abstract—Human activity recognition (HAR) is a 

prominent research topic in computer vision. This topic has 

extensive applications in developing applications for human-

machine interactions, monitoring, and various other fields. 

With the notable progress in research, several methods have 

been proposed to distinguish distinct types of human 

movements by utilizing color, depth, inertia, and skeletal data. 

To enhance the accuracy of human activity recognition and 

overcome the constraint of existing deep learning approaches 

that mainly rely on video frame inputs, we provide The 

solution being suggested using MediaPipe, a platform that 

provides pre-trained machine-learning models specifically 

designed for human pose estimation. These models will 

precisely identify and monitor essential body joints and 

movements while doing activities. Subsequently, the system will 

examine the identified poses to compute significant angles and 

distances for feature extraction. Following that, deep learning 

techniques such as Artificial Neural Networks (ANN) and 1D-

convolutional Neural Networks (1D-CNN) are employed to 

categorize human behaviour. The proposed system's 

performance was assessed using our dataset to detect and 

categorize different human activities. The ANN and 1D-CNN 

models showed superior performance in recognizing human 

activity, with the ANN achieving an accuracy of 99.41 % and 

the 1D-CNN achieving an accuracy of 99.58 %. 

Keywords—HAR, Deep Learning, 1D-CNN, ANN, Human 

Pose Estimation, MediaPipe 

I. INTRODUCTION  

As the interaction between humans and computers grows, 
it has become increasingly crucial for computers to detect 
human behavior and actions. This recognition of human 
activity or behavior is essential for many applications, 
including caring for older adults, fitness, home automation, 
psychological analytical research, detecting and preventing 
violent acts, security, and many more [1]. 

Human activity recognition (HAR) extraction from video 
data has gained significant interest, primarily because of the 
abundance of large video datasets and the progress made in 
deep learning methodologies. Video-based human activity 
recognition (HAR) offers distinct advantages compared to 
image datasets and sensor modalities such as accelerometers 
and gyroscopes. This is because video-based HAR can 
provide a more comprehensive perspective of human 
activities, encompassing temporal and spatial data. Video 
footage can correctly capture the context and environmental 
information that aid in detecting human behaviors [2]. 

In recent years, thorough studies have been conducted 
into recognizing human behavior using deep learning 
approaches, which have yielded a solution. Deep learning 
methods produce feature maps using artificial neural 
networks [3]. Deep neural networks have significantly 
advanced computer vision, natural language processing, and 

robotics. Nevertheless, there is still a need to enhance deep 
learning algorithms for superior performance because Human 
motion is intricate, and its analysis is influenced by factors 
such as chaotic backgrounds, diverse lighting conditions, 
unstable image acquisition, and insufficient pattern classes 
[4]. 

This paper introduces a novel model that utilizes human 
pose estimation techniques using video-based data. 
Specifically, it employs MediaPipe posture, an ML solution 
that accurately tracks body poses and extracts (33) 3D-
landmarks from RGB video frames [5]. As a result, we have 
developed a rapid and efficient detector that demonstrates 
strong performance in extracting features. 

We aim to determine the most effective deep learning 
algorithm for human action detection. We will use two 
algorithms, 1D-CNN and ANN, which are well-suited for 
training, testing, and accurately classifying actions. The main 
contributions to the suggested model include the following: 

 Built new dataset encompassing various activities 
conducted in both indoor and outdoor environments. 

 Developing new model for high speed and low 
processing requirements has been created to 
recognize human activity from videos. 

The organization of this paper is as follows: Section 2 
contains the relevant research, Section 3 specifies our 
strategy, and Section 4 contains the experiments and analysis. 
In conclusion, Section 5 summarizes the entirety of the 
article. 

II. LITERATURE REVIEW 

As mentioned in the introduction, one of the most 
extensively studied areas in the field of computer vision is 
HAR. Various methodologies have been presented based on 
using DL algorithms in the last years to solve the HAR 
problem [6]. 

In 2022, Basly et al. [7], The authors proposed a deep 
temporal residual system for recognizing daily living 
activities. They utilized a deep residual convolutional neural 
network (RCN) to preserve distinctive visual features related 
to appearance and a long short-term memory (LSTM) neural 
network to capture the extended temporal progression of 
actions. The model was applied to two well-known datasets, 
MSRDailyActivity3D and CAD-60, for human activity 
recognition. The suggested approach attains an accuracy of 
91.65 % on the MSRDailyActivity3D dataset and 91.18 % on 
the CAD-60 dataset. A limitation of this study is that the 
proposed system's performance was only evaluated on two 
benchmark datasets. These datasets were captured in an 
indoor environment, specifically a living room, and they only 
represent a subset of possible scenarios in the real world. 



144 

In 2023, Mathew et al. [8] Two deep learning approaches, 
single-frame CNNs and convolutional (LSTM), were used to 
recognize human activities in the movie. Both models were 
trained and evaluated using UCF50, a standardized action 
recognition dataset.  

The dataset contains videos of diverse human activities. 
However, the UCF50 dataset trained only three activities: 
'PullUps', 'WalkingWithDog', and 'PlayingGuitar'.This was 
done due to resource and time restrictions and slow model 
training, as the UCF50 dataset is enormous. They scored 
99.8% on the UCF50 dataset. Their performance was also 
assessed using their own data set of "Jumping", "Walking", 
and "Sitting". They were 83.33 % accurate. 

In 2023, Mohan et al. [2], in this study, hybrid models, 
such as Convolutional LSTM (ConvLSTM) and Long-term 
Recurrent Convolutional Networks (LRCN), have been used 
to enhance the accuracy of Human Activity Recognition 
(HAR) on video datasets. The evaluation of the models is 
conducted using standard video datasets, specifically the 
UCF50 dataset, which consists of 50 distinct action types. 
However, they used only a subset of actions due to 
limitations in computing power and storage capacity. The 
activity was identified using the ConvLSTM and LRCN 
models, with accuracies of 83.46 % and 92.13 %, 
respectively. 

In 2023, U. Dedhia et al. [9], this research uses Google 
Mediapipe to create a virtual fitness trainer by tracking user 
movement with posture estimate techniques. It tracks user 
motions by recognizing exercise-specific bodily markers. 
Angles and landmarks are used to calculate the user's 
performance and feed it into a machine-learning model like 
Logistic Regression, Support Vector Machine, naive Bayes, 
Decision Tree, and Artificial Neural Network. The dataset 
utilized was obtained from Kaggle. Although data was 
available for three exercises, the emphasis was mainly on 
bicep curls. Furthermore, user-supplied data is utilized to 
ensure comprehensive training and assessment of bicep curls. 
A constraint of this study is the limited size of the dataset. 
The maximum accuracy achieved in the Logistic Regression 
(tune) model is 0.99. 

III. THE PROPOSED MODEL 

The proposed model has main four entities: Data 
Collection, Feature Extraction, Pre-processing, and 
Classification employing Deep Learning techniques, 
illustrated in Fig. 1. 

 

Fig. 1. The System Model 

A. Dataset Collection Stage 

The authors constructed the dataset locally specifically 
for this study. This dataset comprises real-time video 
recordings of individuals engaged in various activities in 

front of the camera. The dataset consists of 10 individuals 
who are high school students between the ages of 18 and 25. 
The filming was done with a Sony HDR_CX405 camera. 
The camera is situated at a height of 130cm above the ground 
and a distance of 450 cm from the subject. A total of 120 
video clips were utilized in this research, with each person 
contributing twelve clips. Table (1) provides information 
about these data sets. 

TABLE I.  PROVIDES INFORMATION ABOUT THESE DATA SETS 

Table 1: Dataset Description 

No.  Dataset Details Description 

1 Number of person 10 
2 The number of videos per person 12 

3 Number of classes (Activities) 12 
3 Frame Rate 25 frame per 

second 

4 Camera type Sony HDR_CX405 
5 File format MP4 

6 video display time About 3 minute 

 
The dataset also contains many diverse lighting situations 

in a diverse environment. The data set includes 12 activities, 
and each activity took place in an environment (indoor and 
outdoor). These activities are: (raising legs, running, sitting, 
squatting, standing, walking, clapping, jogging, boxing, hand 
waving, kicking, and shooting), and Fig. 2 shows Sample 
activities within the data set. 

 

Fig. 2. Samples of activities within the dataset 

B. Feature Extraction Stage 

During the feature extraction stage, the Media Pipe model 
is utilized to identify the 2D key joint positions for each front 
and side video frame. This article used MediaPipe Pose 
(MPP), a cross-platform framework that Google developed to 
obtain 2D coordinates of human joints in each image 
frame.MediaPipe Pose constructs pipelines and analyzes 
cognitive information in video format using machine learning 
(ML). MPP utilizes a BlazePose to extract 33 2D landmarks 
on the human body, BlazePose is an efficient machine-
learning framework that achieves real-time execution on 
mobile phones and PCs [10]. To estimate poses and 
activities, our study used 12 specific landmarks, with indices 
11, 12, 13, 14, 15, 16, 23, 24, 25, 26, 27, and 28. These 
landmarks are depicted in Fig. 3. 

 

Fig. 3. Names of the 12 key joint position  

The position estimation component of the proposed 
system predicts the locations of all major joint positions (12) 
for each individual. This gives the video a thick box and 
places the person performing the activity toward the detector 



145 

in the first frame of the video. The tracker then assumes 
control and categorizes the landmark's points inside the 
designated bounding box (ROI: Region of Interest). The ROI 
from the previous frame is used by the tracker to continue 
running on any more video frames. Our work involves using 
a hypothetical point, referred to as the mid(x,y), positioned 
both above and below the individual in space. This unique 
approach allows us to identify and analyze various features, 
which in this case pertain to angles and distances. These 
features constantly change as the person engages in different 
activities, with their body parts moving in different directions 
over time. The hypothetical point is calculated by calculating 
the midpoint (up) between the middle of the shoulders and 
(down) the middle of the hip, as shown in the following 
algorithm (1). 

 
Algorithm 1: calculate a hypothetical point (up and down) 
Input: Frame 
Output: hypothetical point (up and down) 
Step1: Resize the Frame 
Step2: get height, width from Frame 
Step3: Utilize a pose landmark model to obtain left-side landmarks 
             [left-Shoulder, left-Hip] 
Step4: Utilize a pose landmark model to obtain right-side landmarks 
             [right-Shoulder, right-Hip] 
Step5: Find midpoint up point // Get coordinates for each landmark 
Step5-1: Get coordinates x=(left-Shoulder.x   + right-Shoulder.x) / 2 
                Get coordinates Y=(right-Shoulder.x + right-Shoulder.x) / 2 
Step5-2 midpoint= (coordinates x, coordinates y) 
Step6: up point =(0, coordinates y) 
Step7: Find midpoint up point // Get coordinates for each landmark 
Step7-1: Get coordinates x=(left- Hip.x   + right- Hip.x) / 2 
                Get coordinates Y=(right- Hip.x + right- Hip.x) / 2 
Step7-2 midpoint= (coordinates x, coordinates y) 
Step8: up down=(height, coordinates y) 
Step9: return (up point, up down) 
 

We calculate all the angles that form the main joints with 
the hypothetical point, as shown in Fig. 4 and Algorithm 2. 

 
Fig. 4. Samples of angles and distances. 

The following algorithm (3) explains the extraction of 
features from video frames. 

 
Algorithm 2:  Calculate Angle 
Input : Three points in 2D space ( first, mid, end) 
Output: angle 
Step1: Calculate Numerator  
            numerator =mid.y*(first.x-end.x)+first.y*(end.x-
mid.x)+end.y*(mid.x – first.x) 
Step2: Calculate denominator 
            denominator = (mid.y-first.x)*( first.x -end.x) +(mid.y – 
first.y)*(first.y – end.y) 
Step3: Calculate Angle  
Step3-1: find the angle in radians 

               𝑎𝑛𝑔 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟
 ) 

Step3-2: Convert the angle from radians to degrees 

                𝑎𝑛𝑔 =  𝑎𝑛𝑔 ∗  
180 

𝜋
 

Step4: If the resulting angle is negative  
             if ang < 0 then  
                  ang = 180 + ang 
Step5: return ang 

 
Algorithm (3) Extraction of the  “Features” 
Input: file video 

Output: Features (angles and distances). 
Step1: Open the video file reading  
Step2:  Loop Over Frames 
Step2-1: Resize the Frame 
Step2-2: landmark detection in MediaPipe 
Step2-2-1: Utilize a pose landmark model to obtain the left-side landmarks  
                    [ left -Shoulder, left-Elbow, left-Wrist, left-Hip, left-Knee, left-
Ankle].  
Step2-2-2: Utilize a pose landmark model to obtain the right-side 
landmarks  
                    [ right-Shoulder, right-Elbow, right-Wrist, right-Hip, right-
Knee, right-Ankle] 
Step2-3: Define a hypothetical point mid.up(x1 ,y1) up the person and 
mid.down( x2,y2) down     
the person 
Step2-4: Extraction features of distances left-side and right-side   
                For each landmarks-left, landmarks-Right in left-side, right-side 
do  
                      // Get coordinates for each landmarks 
                      P1= [landmarks-left.x, landmarks-right.y ] ,      
                      P2= [landmarks-left.x, landmarks-right.y ],  
                      Distance= ((p2[0] – p1[0]) *2 + (p2[1] –p1[1]) *2) * 0.5 
                      Features. Add(Distance) 
                 End for  
Step2-5: Extraction features of angles left-side with mid.up and mid.down 
Step2-5-1: Feature angles hypothetical point mid.up 
                    For each landmarks-left, landmarks-Right in left-side, right-
side do 
                         // Get coordinates for each landmarks 
                         first= [landmarks-left .x,landmarks-left.y],end=[landmarks-
left.x,landmarks-left.y ]    
                         angle-left-up= call calculate angle1 (first,mid.up,end) 
                         first=[landmarks-Right.x,landmarks-
Right.y],end=[landmarks-Right.x,landmarks-Right.y ]    
                         angle-Right-up= call calculate angle1 (first,mid.up,end) 
                         Features.Add(angle-left -up) 
                         Features.Add(angle-Right-up) 
                    End for  
Step2-5-2: Feature angles hypothetical point mid.down 
                     For each landmarks-left, landmarks-Right in left-side, right-
side do 
                         // Get coordinates for each landmarks 
                         first= [landmarks-left .x,landmarks-left.y],end=[landmarks-
left.x,landmarks-left.y ]    
                         angle-left- down = call calculate angle1 (first,mid. 
down,end) 
                         first=[landmarks-Right.x,landmarks-
Right.y],end=[landmarks-Right.x,landmarks-Right.y ]    
                         angle-Right- down = call calculate angle1 (first,mid. 
down,end) 
                         Features.Add(angle-left - down) 
                         Features.Add(angle-Right- down) 
                    End for  
Step2.3: end Over Frames  
Step3: return Features 

 

C. Pre-processing Stage 

This stage's inputs consist of features retrieved from the 
2D key join points. The pre-processing stage comprises two 
sub-steps: data cleansing through Exploratory Data Analysis 
(EDA) and Data normalization. 

 Cleaning Data 

This stage involves assessing and removing outliers from 
the input dataset to enhance data comprehension and 
optimize classification model performance. Exploratory data 
analysis is a method used to search for outliers in large 
amounts of data. The EDA employs algorithm (4) to address 
outliers in the data [11]. 

Algorithm (4): Elminate the Outlier 
Input: Dataset 
Output: New Dataset 
Begin 
Step 1: For each column in a dataset, Do 
Step 2: Determine the lower and upper range from the column. 
Step 2-1: Arrange in ascending order (column) 
Step 2-2: Determine the quantile for each column 
                Q1= Column. Quantile (0.25) 
                Q3= Column. Quantile (0.75) 



146 

Step 2-3: Calculate lowerand upper range 
                IQR = Q3-Q1 
                Lower range = Q1-(1.5*IQR) 
                Upper range = Q3+(1.5*IQR) 
Step 3: Modify the data in the column with the updated range values.      
Step 3-1: For each value in the data: 
                If value  <  lower range then  
                      New value ← lower range 
                      New dataset ←  Update the value in the column  
                If value  >  upper range then  
                      New value ← upper range 
                      New dataset ←  Update the value in the column  
Step 4:            End for 
Step 5:   End for 
Step 6: Return New Dataset 
End 
 

 Data Normalization 

It involves converting the data into a format that falls into 
a specific range, such as [0.0, 1.0], to generalize data values. 
The goal of normalizing the data is to assign equal weight to 
each feature. Normalization is often used, particularly when 
the input variables have varied scales, to guarantee the 
accuracy of the predictive modeling and help hasten the 
learning process. Min-Max Normalization was used in the 
data normalization process. This method involves applying 
linear transformations to the primary data. Assume that 
max(x) and min(x) reflect the highest and lowest values for a 
set of features, where the value is given to the feature (x), 
(z^') is the normalized value, and has the formula as seen in 
(1) below [12]. 

z′ =    
𝑥 −  𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
   (1) 

D. Classification based on DL Stage 

Before commencing this stage, the dataset comprises 
around 51000 samples as shown in the Fig. 5. Subsequently, 
it is partitioned into 70 % for training, 20 % for validation, 
and 10 % for testing. We construct the human activity 
recognition system using two models, specifically ANN and 
1D-CNN. 

 

Fig. 5. Distribution of features across each class 

 ANN Structure 

(ANNs) are computational models that mimic the 
information-processing capabilities of the human brain. 
ANNs are trained (or learned) by experience with suitable 
learning exemplars, not by programming. 

The ANN architecture used in the model comprises of 
three layers: an input layer, an output layer, and a hidden 
layer, as depicted in Fig. 6. The input layer consists of 
128 neurons, while the hidden layer is composed of four 
layers of 225, 1042, 10, and 16 neurons, respectively. The 
Artificial Neural Network (ANN) applies a non-linear 
adjustment to the input of the Rectified Linear Unit (ReLU). 
It is utilized after the input and concealed layers. It computes 
using the (2). 

     

 

max 0.

   0

0    0

  


 



i i

i

eLU X f x x

x x
f x

x          

(2) 

The output layer consists of 12 neurons, which 
corresponds to the number of classes. The softmax` 
activation function is utilized for multi-class classification, 
following equation (3). 

𝒇(𝒙𝒊  ) =  
𝒆𝒙𝒊

∑  𝒆
𝒙𝒋𝒌

𝒋=𝟏
     (3) 

where 𝑒𝑥𝑖  standard exponential function for input vector, k 
number of class, and 𝑒𝑥𝑗 standard exponential function for 
output vector 

 
Fig. 6. ANN architecture  

 1D-CNN Structure 

Deep learning technique CNN has been widely utilized 
for computer vision tasks including image categorization and 
object detection. CNN has neuron layers, pooling layers, and 
fully linked layers. Convolutional layers scan images or 
videos with learnable filters. The pooling layers decrease the 
size and keep just important elements. Fully connected layers 
classify data using extracted features. We employ 1D-CNN, 
which are more advantageous and preferable compared to 
2D-CNNs due to their lower complexity. 

The 1D-CNN architecture used in the model comprises 
multiple layers, as depicted in Fig. 7. The initial 
convolutional layer of the model utilizes a collection of 512 
filters to process the input features. Each filter has 
dimensions of 1x1. The Rectified Linear Unit (ReLU) 
activation function is employed after each level of 
convolutional layers and with fully connected layers. After 
each level of convolutional layers, a max pooling layer is 
applied to the previous layer's output. The pool size utilized 
for max pooling is (2,2). The model's second convolutional 
layer utilizes a collection of 256 filters, each with dimensions 
of 1x1. 

Next, a dropout layer was implemented to mitigate 
overfitting by randomly deactivating 25 % of the neurons. A 
batch normalization layer is inserted into the model following 
the dropout layer. This layer stabilizes the learning process 
by normalizing the output of the preceding layer. The two-
dimensional matrix input is subsequently transformed into a 
vector through a layer known as Flatten. Following this, two 
fully connected (dense) layers are incorporated into the 
model. The initial completely connected layer consists of 
2048 units. The second layer consists of 1024 units. The 
output layer serves as the ultimate layer in the neural 
network. The number of nodes in this layer corresponds to 
the number of classes in the classification problem, namely 
the number of human activities in our model. The activation 
function employed for this layer is the softmax function, 
which transforms the layer's output into a probability 
distribution across the classes. 



147 

 

Fig. 7. 1D- CNN architecture 

In ANN and 1D-CNN. A machine is designed to acquire 
knowledge from a dataset and is anticipated to enhance its 
performance gradually. When the model receives input, a 
function is applied to it, and it undergoes a series of 
transformations through several layers, resulting in an output 
value. The model compares the generated output with the 
actual output and calculates the difference. To minimize the 
discrepancy, backpropagation propagates the output back 
into the model. The model iteratively updates the weights and 
continues this process until convergence. This drives us to 
search for an algorithm to expedite learning and produce 
optimal results. Optimization algorithms are fundamental for 
enabling a machine to learn from its experiences. It computes 
gradients and seeks to minimize the loss function. Several 
optimization strategies implement learning. The algorithm 
utilized in the current study is (Adam) the term "adaptive 
moments" is the source of its derivation. It is a hybrid of the 
rmsprop and momentum optimization algorithms. The update 
operation exclusively considers the differentiable form of the 
gradient and incorporates a bias correction method [13] 
provides a detailed analysis of the Adam algorithm. The loss 
function evaluates the network's performance in 
accomplishing its designated goal. Cross-entropy loss, often 
known as log loss, quantifies the effectiveness of a classifier, 
And its equation is shown below: 

  log( )
c

i i
i

Cross Entopy a p   

where c represents the number of classes, a_i represents the 
actual value, and p_i represents the anticipated value. 

IV. EXPERIMENTAL RESULTS AND DISSCUSION 

In this section, we present the recognition results of the 
proposed system using two models. (ANN and 1D-CNN) for 
classifying 12 classes using the collected features dataset 
with indoor and outdoor environment. Fig. 8 exhibits the 
accuracy and loss of the implemented models on the training 
and validation per epoch (epochs = 100).  

 

 

Fig. 8. The measure of accuracy and loss as a function of epochs for the 
training set (blue) and validation set (green) 

In the first column of the previous figure, we observe that 
the accuracy values for the implemented models remain 
stable over the epochs. The training accuracy for the ANN 
model is approximately 0.99516, and the validation accuracy 
is around 0.96464. For the 1D-CNN model, the training 
accuracy is about 0.99172, and the validation accuracy is 
around 0.97198. These results were obtained after 100 
epochs. The second column shows that the training loss value 
reaches an approximate value of 0.01771, while the testing 
loss is around 0.23114 in the ANN. The training loss value 
converges to roughly 0.02749, whereas the validation loss is 
around 0.15387 in a 1D-CNN model trained for 100 epochs. 

The 1D-CNN model has slightly superior validation 
accuracy (97.20 %) compared to the ANN model (96.46 %). 
Nevertheless, the disparity is negligible, and both models 
attain high accuracy. The 1D-CNN model has a validation 
loss of 0.15387, which is lower than the validation loss of the 
ANN model, which is 0.23114. 

Fig. 9 shows confusion matrix-based ANN and 1D-CNN 
classification system performance. Confusion matrices assess 
classifier predictions on a dataset. Diagonal units reflect true 
positives as the classifier evaluates, while off-diagonal items 
are mislabeled. Thus, higher confusion matrix diagonal 
values improve accuracy. The CNN model's 0.9958 % 
accuracy exceeds ANN's 0.9941 %. 

 

Fig. 9. The confusion matrixes for Recognition System based on; (a) ANN 

(b) 1D-CNN 

Fig. 9 shows a comparison between the performance of 
the ANN and CNN models. This comparison is based on the 
results of the proposed model, which are shown in Table (2). 
This analysis aims to determine which model produced the 
highest classification results. 

TABLE II.  PERFORMANCE OF THE CLASSIFICATION MODELS 

Class ANN 1D-CNN 

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score 

Applause 0.99687 0.98364 0.98723 0.98543 0.99785 0.98776 0.99297 0.99036 

Boxing 0.99687 0.98124 0.98866 0.98493 0.99804 0.99275 0.98917 0.99096 

Hand waving 0.99647 0.98571 0.98221 0.98396 0.99863 0.99443 0.99259 0.99351 
Jogging 0.98668 0.76 0.63333 0.69091 0.98923 0.77895 0.68519 0.72906 

Kicking 0.98786 0.94779 0.92913 0.93837 0.99079 0.94925 0.9619 0.95553 

Raise legs up 0.99079 0.95694 0.96774 0.96231 0.99412 0.98258 0.96575 0.97409 



148 

Class ANN 1D-CNN 

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score 

Running 0.98629 0.57143 0.74419 0.64646 0.98844 0.55405 0.61194 0.58156 

Sitting 0.99882 0.98915 0.99781 0.99346 0.99961 0.99784 0.99784 0.99784 

Squat 0.99647 0.9721 0.98908 0.98052 0.99785 0.98986 0.98785 0.98886 
Walking 0.99687 0.98276 0.92935 0.95531 0.99765 0.96392 0.97396 0.96891 

paying off 0.99628 0.98833 0.97505 0.98164 0.99765 0.98185 0.99388 0.98783 

stand up 0.99922 0.99804 0.99414 0.99609 0.99961 0.99616       1 0.99808 
 

Average 0.994124 0.926428 0.926493 0.924949 0.995789 0.930783 0.92942 0.929716 

 
According to Table 5, both models performed well in the 

activity recognition process, although the CNN model 
outperformed the other model. The "Accuracy value" is 
0.995789, the "precision" is 0.930783, the "Recall" is 
0.92942, and the “F1 Score” is 0.929716. The ANN model 
achieved an accuracy value of 0.994124, a precision of 
0.926428, a recall of 0.926493, and an F1 Score of 
0.92494949. 

Several investigations have focused on the recognition of 
human activity, employing various methodologies and 
strategies that have been utilized in previous years. The 
suggested system demonstrated superior accuracy compared 
to earlier studies, as demonstrated in Table (3). 

 

TABLE III.  COMPARISON OF THE PROPOSED SYSTEM AND RELEVANT APPROACHES 

Ref Classification algorithm Dataset Accuracy value 

Basly et al. (2022)           RCN and LSTM MSRDailyActivity3D           91.65% 

CAD-60           91.18% 
Mathew et al. (2023)           CNN and LSTM UCF50            99.8% 

Own dataset            83.33% 

Mohan et al. (2023) ConvLSTM UCF50            83.46% 
LRCN            92.13% 

U.Dedhia et al. (2023) LR, SVM, Naïve Bayes, Decision Tree, and  

ANN 

Dataset from Kaggle            99%  

User data 

Our Proposed System                 ANN  New Dataset            99.41% 

              1D-CNN            99.58% 

 

The table above clearly demonstrates that our system 
performed better than previous systems, except for Mathew 
et al. who achieved a 99.8 % accuracy using UCF50. 
However, it is important to note that they only used three out 
of the 50 activities due to resource and time constraints. 
When they used their system with private data, which also 
included only three activities ("jumping," "walking," and 
"sitting"), they achieved an accuracy of 83.33 %. In 
comparison, our system utilized our own dataset with twelve 
activities in both indoor and outdoor environments, achieving 
accuracies of 99.41 % and 99.58 % in ANN and CNN, 
respectively. Also, we observed that Didia et al. reached a 
high level of accuracy, close to 99 %, in their system. 
However, their study specifically focused on bicep curls, and 
one weakness of their research is the small dataset. 

V. CONCLUSION 

HAR utilizing ANN and 1D-CNN models and MediaPipe 
framework present a promising solution for predicting 
activity in a video the model has not seen before. The ANN 
and 1D-CNN conventional networks have effectively 
addressed many computer vision challenges. ANN and 1D-
CNN are highly efficient in carrying out the classification 
process. MediaPipe Pose (MPP) is a versatile framework 
created by Google for extracting the 2D coordinates of 
human joints in every video frame. This amalgamation of 
methodologies seeks to augment the precision and resilience 
of video categorization. 

In this study, MPP is suitable for our use case since it can 
automatically extract features from video frames by 
calculating angles and distances between key points; the two 
models discussed were trained and tested on features 
extracted from the video dataset we created for this 
experimentation. While both models performed ideal in 
recognition tests, the 1D-CNN model proved more accurate. 
We aim to expand our newly created dataset to incorporate 

more videos featuring individuals of diverse ethnic 
backgrounds in our future endeavors. Because the suggested 
models can be more effective when applied to a more 
extensive dataset, we would also like to see them expanded 
for a larger dataset like Kinetics 700. In addition, we are 
interested in investigating the potential applications of these 
models in a surveillance system for financial institutions and 
airports, where they may be used to record and identify the 
actions of lone persons. The authorities in charge of these 
areas can be notified through an alarm system if they observe 
risky behaviors like "jogging," "falling," or "stealing." 

REFERENCES 

[1] Z. Yu and W. Q. Yan, “Human Action Recognition Using Deep 
Learning Methods,” Int. Conf. Image Vis. Comput. New Zeal., vol. 
2020-Novem, pp. 2–7, 2020, doi: 
10.1109/IVCNZ51579.2020.9290594. 

[2] G. K. Mohan, “Recognizing Human Activity Using Hybrid Models of 
CNN and LSTM in Deep Learning,” Int. J. Food Nutr. Sci., vol. 11, 
no. 12, pp. 1663–1674, 2023, doi: 10.48047/ijfans/v11/i12/178. 

[3] A. Çalışkan, “Detecting human activity types from 3D posture data 
using deep learning models,” Biomed. Signal Process. Control, vol. 
81, no. March, pp. 1–7, 2023, doi: 10.1016/j.bspc.2022.104479. 

[4] A. C. Cob-Parro, C. Losada-Gutiérrez, M. Marrón-Romera, A. 
Gardel-Vicente, and I. Bravo-Muñoz, “A new framework for deep 
learning video based Human Action Recognition on the edge,” Expert 
Syst. Appl., vol. 238, no. October 2023, 2024, doi: 
10.1016/j.eswa.2023.122220. 

[5] T. Lynn, “Pose Estimation Algorithms: History and Evolution,” pp. 
1–14, 2023, [Online]. Available: https://blog.roboflow.com/pose-
estimation-algorithms-history/ 

[6] H. C. Nguyen, T. H. Nguyen, R. Scherer, and V. H. Le, “Deep 
Learning for Human Activity Recognition on 3D Human Skeleton: 
Survey and Comparative Study,” Sensors, vol. 23, no. 11, pp. 1–33, 
2023, doi: 10.3390/s23115121. 

[7] H. Basly, W. Ouarda, F. E. Sayadi, B. Ouni, and A. M. Alimi, “DTR-
HAR: deep temporal residual representation for human activity 
recognition,” Vis. Comput., vol. 38, no. 3, pp. 993–1013, 2022, doi: 
10.1007/s00371-021-02064-y. 



149 

[8] S. Mathew, A. Subramanian, and S. Pooja, “Human Activity 
Recognition Using Deep Learning Approaches: Single Frame Cnn and 
Convolutional Lstm”. 

[9] U. Dedhia, P. Bhoir, P. Ranka, and P. Kanani, “Pose Estimation and 
Virtual Gym Assistant Using MediaPipe and Machine Learning,” 
2023 Int. Conf. Network, Multimed. Inf. Technol. NMITCON 2023, 
no. February, 2023, doi: 10.1109/NMITCON58196.2023.10275938. 

[10] U. Dedhia, P. Bhoir, P. Ranka, and P. Kanani, “Pose Estimation and 
Virtual Gym Assistant Using MediaPipe and Machine Learning,” 
2023 Int. Conf. Network, Multimed. Inf. Technol. NMITCON 2023, 
no. September 2023, 2023, doi: 
10.1109/NMITCON58196.2023.10275938. 

[11] C. H. Yu, “Exploratory data analysis in the context of data mining and 
resampling.,” Int. J. Psychol. Res., vol. 3, no. 1, pp. 9–22, 2010. 

[12] C. Fan, M. Chen, X. Wang, J. Wang, and B. Huang, “A Review on 
Data Preprocessing Techniques Toward Efficient and Reliable 
Knowledge Discovery From Building Operational Data,” Front. 
Energy Res., vol. 9, no. March, pp. 1–17, 2021, doi: 
10.3389/fenrg.2021.652801. 

[13] X. Jiang, B. Hu, S. Chandra Satapathy, S.-H. Wang, and Y.-D. Zhang, 
“Fingerspelling Identification for Chinese Sign Language via 
AlexNet‐Based Transfer Learning and Adam Optimizer,” Sci. 
Program., vol. 2020, no. 1, p. 3291426, 2020. 

 


