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Abstract— In a wireless sensor network, nodes localization 

seeks to use known (main or anchor) nodes to help detect the 

locations of the unknown (target) nodes. The localization 

accuracy can have a big impact on a WSN's performance. This 

paper suggests a strategy for node localization based two 

recently developed bioinspired algorithms, the Crayfish 

Optimization Algorithm (COA) and the Flow Direction 

Algorithm (FDA). In several WSN deployment scenarios, the 

suggested techniques are contrasted with each other. On the 

hand of localization error and time of computation, the testing 

findings demonstrate that the suggested FDA localization 

scheme outperforms the alternative localization technique. 
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I. INTRODUCTION  

In recent years, wireless sensor networks (WSNs) have 
drawn interest from all over the world, especially with the 
growth of Micro-Electro-Mechanical Systems (MEMS) 
technology, which has made the creation of smart sensors 
easier [1]. a metaheuristic is an advanced process or heuristic 
that is intended to locate, produce, adjust, or choose a 
heuristic that could offer an adequate answer to an 
optimization or machine learning issue [2] [3].  

In the past several years, there have been numerous 
research attempts on this issue among the scientific 
community. It should be noted that the definition of 
localization is the process of determining an unknown node's 
position, either by employing connectivity information 
between the unknown nodes or by utilizing nodes with 
known positions. Recent research has examined how 
movement affects localization.[4], [5], [6], real world 
applications [7], [8], [9], “Anchor Free” and “Anchor Based” 
localization techniques [10], “Range Based and Range Free” 
schemes of localization [11], “Non-Cooperative” schemes—
where the target nodes only connect with the anchor nodes—
and “Cooperative” algorithms—where communication 
occurs among all nodes[12], “The centralized” scheme 
localization and “the distributed” scheme, which uses locally 
collected information to determine each node's position 
without central supervision.[13][14]. This paper's primary 
contribution is the first-ever localization of WSN nodes 
utilizing the DFT and the COA. Analysis and comparison are 
conducted between these schemes. 

Regarding to the time of computing and localization 
error, results showed that the DFT-based localization 
schemes outperform the COA localization scheme. The 
paper's remaining sections are arranged as follows: A 
selection of the field research projects is covered in 
Section 2. A brief overview of the swim algorithms used in 
this work is given in Section 3. The suggested DFT and 
COA-based localization schemes are presented in Section 4. 

The findings analysis and conducted experiments are 
included in Section 5. In Section 6, the paper is finally 
concluded. 

II. LITERATURE REVIEW 

Numerous optimization strategies have been used in 
recent years to solve the node localization issue in WSNs. A 
brief description and coverage of a few recent pertinent 
works are provided in this section. 

In 2020, Rong Tan and etc.., developed and implemented 
the DMA node localization algorithm, by, demonstrates its 
sensor node localization theory and presents a potential 
foundation for placement to be realized in WSNs and the 
results showed that the suggested strategy performing are 
better for energy consumption and accuracy of localization 
than other popular approaches, which presents a chance to 
meet the need for high-precision sensor node localization in 
the development of WSNs [15]. 

In 2020, Drs. D. Chandirasekaran and S. Sugumaran tried 
to determine the nodes' positions Using experiments and 
simulations, using Cat Swarm Optimization (CSO), a novel 
swarm-based optimization technique modelled after the 
behaviour of cats and Results using the CSO algorithm have 
been found to be significantly better than those obtained 
using Particle Swarm Optimization (PSO), another well-
known swarm-based optimization approach. The CSO 
algorithm's fast searching feature made it possible to locate 
wireless sensor network node localization more quickly 
while maintaining the highest level of positioning accuracy 
and stability [16]. 

In 2020, Sana Messous and Hend Liouane introduced An 
Online Sequential DV-Hop technique to improve accuracy 
localization node to multihop WSNs by progressively 
calculating node positions. The simulation results 
demonstrate that the suggested algorithm notably decreases 
the average localization error of sensor nodes when 
compared to the original DV-Hop and other localization 
techniques discussed in the literature [17]. 

In 2021, Pudi Sekhar and etc.., was developed effective 
metaheuristic group learning optimization scheme for 
localization the node GTOA/NL scheme for Wireless sensor 
network SN-enabled indoor communication. The results 
obtained guarantee that the model does best than another 
technique in different transmission range, ranging error, and 
the number of main nodes [17]. 

In 2021, Sana Messous and etc.., suggested an updated 
version of the technique for less the significant error of 
localization in original DV/Hop scheme. According to 
experimental findings, the suggested localization method 
increases localization accuracy while reducing localization 
error [17]. 
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In 2022, Himanshu and etc.., showed by using a single 
mobile anchor node, artificial intelligence applications for 
target node placements in WSNs. To detect ideal locations 
for target nodes, the following methods are applied 
independently: Firefly Algorithm (FA), Hybrid PSO (HPSO), 
and Particle Swarm Optimization (PSO) and the findings 
demonstrate that, in comparison to current methods, the 
suggested schemes do best on the hand of energy, time of 
convergence, and the accuracy [18]. 

In 2022, Wenyan Liu et al. suggested a node localization 
technique depend on the strategy location of main node 
selection to more effectively address the conflict between the 
placement of anchor nodes in wireless sensor networks, 
localization accuracy, and coverage of localization. The 
suggested technique outperforms the standard algorithms that 
are already in use in terms of localization coverage and 
accuracy, according to the result [19]. 

In 2023, Yuxiao Cao and etc.., colleagues introduced a 
DV Hop based location scheme for WSNs that makes use of 
optimal anchor nodes subsets and the outcomes show that, in 
a variety of network scenarios, the OANS DV Hop scheme 
has a better accuracy of localization than both the first DV 
Hop and other enhanced DV Hop schemes [20]. 

In 2023, Bahadur and etc.., introduced a novel genetic 
algorithm-based approach to optimize energy usage in 
wireless sensor networks. The comparison's findings 
suggested that these logarithms and techniques might lessen 
that energy, albeit to different degrees. It has been found that 
using the recommended methods could result in a 50% 
decrease in energy use [21]. 

In 2023, The Multi-population Firefly Algorithm Based 
Node Deployment in Underwater Wireless Sensor Networks, 
which Annapurna presented, demonstrates how MFA may 
produce more residual energy and improved deployment 
accuracy with lower error and expense [22]. 

III. INTELLIGENT SWARM ALGORITHMS 

The collective activities of self-organized systems are the 
foundation of intelligence of swarm. Ant Colony System 
(ACS), Artificial Bee Colony (ABC), Bacteria Foraging 
(BF), Stochastic Diffusion Search (SDS), Particle Swarm 
Optimization (PSO)… and other common SI systems are 
examples. In addition to its applications in traditional 
optimization problems, SI may also be utilized in the control 
of robotics and unmanned vehicles, prediction of social 
behaviours, improvement of communications and computer 
networks, and more. Swarm optimization can be effectively 
utilized in several domains such as engineering and social 
sciences [23][24]. In this work, we examine two swarm 
intelligence schemes for optimization problems and several 
comparisons are made between these algorithms. 

A. Crayfish Optimization Algorithm (COA) 

The crayfish has a hard shell and resembles a shrimp. It is 
a member of the Decapoda, Crustacea, and Arthropoda 
groups in animal taxonomy. It is typically regarded as an 
important species for freshwater habitats [25]. The behaviors 
of crayfish during foraging, summer vacations, and 
competition inspire the COA. COA's exploitation stages 
include foraging and competition, while the exploration 
stages are represented by the summer resort periods. At the 
start of the process, the crawfish colony X is defined to 
represent the features of swarm intelligence optimization. 
The ith crayfish's location, Xi, denotes a solution. (Xi = 
{Xi,1, Xi,1, Xi,1...Xi,dim}, where dim, usually referred to as 

dimension, is the characteristic quantity of the optimisation 
issue). The function f (·) is introduced by Xi in order to get 
the fitness value, or solution [26]. Temperature, a random 
constant representing the environmental temperature, 
regulates COA's exploration and exploitation. When 
temperature rises very high, COA enters summer resort stage 
or the competitive. In summer resort stage, the new solution 
is updated based on the cave position Xshade and the 
individual position Xi. When the temperature is optimal, 
COA transitions to the foraging stage. During foraging, the 
best position or optimal solution is where the food is located. 

Food size is determined by the current solution, 
fitnessfood (obtained by the best or optimal solution), and the 
optimal solution, fitness (obtained by Xi). Crayfish obtain 
new foods based on their position (Xi), food position 
(Xfood), and food intake (constant p) when the food is 
suitable. The crayfish divides up enormous meals with its 
claw foot and then eats with its second and third walking 
feet, alternately [26]. 

 

Fig. 1. Structure diagram of COA [26] 

1) Initialization of population 
Every crayfish in the multidimensional optimization 

problem is represented by a 1 × dim matrix. Each column 
matrix represents the problem's solution. The upper and 
lower bounds of the set of variables (Xi,1, Xi, 2..., Xi,dim) 
must contain all of the variables Xi. 

A set of potential solutions X is randomly generated as 
the COA's initialization in the space.  

It is suggested that the solution candidate X be used 
depended on the number of the population N and the 
dimension of area dim [27]. The initialization of COA 
scheme is showed in Equation (1).  

𝑋 = [𝑋1, 𝑋2, … , 𝑋𝑁] =  

[
 
 
 
 
𝑋1,1       …  𝑋1,𝑗         … 𝑋1,𝑑𝑖𝑚

⋮     ⋯     ⋮           …    ⋮
 

𝑋𝑖,1       … 𝑋𝑖,𝑗           …  𝑋𝑖,𝑑𝑖𝑚
⋮     ⋯     ⋮           …    ⋮

 𝑋𝑁,1     … 𝑋𝑁,𝑗          …  𝑋𝑁,𝑑𝑖𝑚]
 
 
 
 

 (1) 

where 𝑁 is populations number, 𝑑𝑖𝑚 is dimension of the 
population, and 𝑋𝑖,𝑗  describes the location of individual 𝑖 in 

the 𝑗 dimension. The value of 𝑋𝑖,𝑗 is obtained from Equation 

(2). 

𝑋𝑖,𝑗  = 𝑙𝑏𝑗  + ( 𝑢𝑏𝑗  − 𝑙𝑏𝑗  ) × 𝑟𝑎𝑛𝑑   (2) 

where 𝑟𝑎𝑛𝑑 is a random number and 𝑙𝑏𝑗   and 𝑢𝑏𝑗   denote the 

lower and upper bounds of the 𝑗𝑡ℎ dimension, respectively 
[28].  
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2) Define the temperature and feed of crayfish 
Crayfish will exhibit behavioral changes and progress 

through distinct stages due to temperature shifts. Equation (3) 
defines temperature. When the temperature reaches above 
30°C in the summer, crayfish will choose a cool location. 
When the temperature is right again, the crayfish will resume 
feeding. The quantity of crayfish that feed is influenced by 
temperature. The optimal feeding range for crayfish is 
between 15 and 30 degrees Celsius. As a result, it is possible 
to roughly estimate how much crayfish to feed according to 
their regular distribution, with temperature having an impact. 
Because between 20 and 30 °C, crayfish exhibit robust 
feeding behavior. As a result, the COA specifies a 
temperature range of 20 to 35 °C [26]. Equation (4) displays 
the crayfish intake mathematical model.  

𝑡𝑒𝑚𝑝 = 𝑟𝑎𝑛𝑑 × 15 + 20             (3) 

where temp, is the crayfish's location's temperature. 

𝑝 = 𝐶1 × (
1

√2×𝜋∗𝜎
× 𝑒𝑥𝑝 (−

(𝑡𝑒𝑚𝑝−𝜇)2

2𝜎2
))        (4) 

Among them, μ denotes the perfect crayfish temperature, 
and C_1 and σ are utilized to organize crayfish intake in 
various temperatures. 

3) Stage of summer resort (exploratory phase) 
The crayfish take sanctuary in a cave during their summer 

season when the temperature rises beyond thirty degrees. 

Here is how the cave 𝑋𝑠ℎ𝑎𝑑𝑒 is described:  

𝑋𝑠ℎ𝑎𝑑𝑒 = (𝑋𝐺 + 𝑋𝐿)/2   (5) 

where XL denotes the optimal position of the current 
population and X_G is the optimal position reached thus far 
based on the number of iterations. 

Random fights break up between crayfish over caverns. 
The crawfish will enter the cave unhindered and be prepared 
for summer when rand is less than 0.5, which means that no 
other crawfish are vying for the cave. The crayfish plans to 
spend the summer in the cave by using (6) [29]. 

𝑋𝑖.𝑗
𝑡+1 = 𝑋𝑖.𝑗

𝑡 + 𝐶2 × 𝑟𝑎𝑛𝑑 × (𝑋𝑠ℎ𝑎𝑑𝑒 − 𝑋𝑖.𝑗
𝑡 )        (6) 

According to (7), C2 is a declining curve, where t denotes 
the iteration number of the current generation and t+1 the 
iteration number of the next generation.  

𝐶2 = 2 − (𝑡/𝑇)    (7) 

where 𝑇 is the maximum number of iterations that are 
permitted.  

Crayfish try to go to the cave, which stands for the best 
course of action, as they progress through the Summer Resort 
stage. The crayfish will now begin to migrate in the direction 
of the cave, increasing COA's potential for exploitation and 
bringing them closer to the best course of action [30]. This 
procedure helps the algorithm to converge more quickly. 

4) The Exploitation Phase, or Competition Stage 
When rand ≥ 0.5 and temp > 30, it indicates that other 

crayfish are interested in the cave. They are going to battle 
over who gets to keep the cave. Equation (8) is used by the 
crayfish to compete for the cave [27]. 

𝑋𝑖.𝑗
𝑡+1 = 𝑋𝑖.𝑗

𝑡 − 𝑋𝑧.𝑗
𝑡 + 𝑋𝑠ℎ𝑎𝑑𝑒   (8) 

where according to equation (9), 𝑧 stands for the random 
individual of crayfish. 

𝑧 = 𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑 × (𝑁 − 1)) + 1   (9) 

During the Competition stage, crayfish compete with one 
another.  

with crayfish 𝑋𝑖 changing positions in reaction to 𝑋𝑧′𝑠 
position. This positioning change expands COA's search 
range, which strengthens the algorithm's capacity for 
exploration [26]. 

5) Phase of foraging (exploitation) 
It's best to feed crayfish when the temperature is below 

thirty degrees. The crayfish will start to move towards the 
food. Once they've located it, they'll measure it. The crayfish 
will use their claws to break up huge prey before using their 
second and third walking legs to eat it [30]. X_food is a food 
location that is described as: 

𝑋𝑓𝑜𝑜𝑑 = 𝑋𝐺    (10) 

Q represent the food size that defined as: 

𝑄 = 𝐶3 × 𝑟𝑎𝑛𝑑 × (𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖/𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑜𝑜𝑑)     (11) 

The food component, 𝐶3, always has a value of 3, which 

stands for the largest food. The 𝑖𝑡ℎ crayfish's fitness value is 

indicated by the notation 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 , but the food location's 

fitness value is shown as 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑜𝑜𝑑. 

 

Fig. 2. (a) Before eating, crayfish shred their food. (b) Crayfish consume 
food right away [26] 

The crayfish will use its first claw foot, as shown in 
Fig. 2(a), to break down the meal. The following is the 
mathematical formula [29]: 

𝑋𝑓𝑜𝑜𝑑 = 𝑒𝑥𝑝 (−
1

𝑄
) × 𝑋𝑓𝑜𝑜𝑑 ,        (12) 

The food will be picked up and put in the mouth using the 
second and third paws as it gets smaller and shreds. Using 
simulation, the alternating process is recreated by combining 
the sine and cosine functions. As shown in Fig. 2(b). 
Additionally, because crayfish intake and food availability 
are correlated, the foraging equation is as follows: 

𝑋𝑖.𝑗
𝑡+1 = 𝑋𝑖.𝑗

𝑡 +𝑋𝑓𝑜𝑜𝑑 × 𝑃 × (cos(2 × 𝜋 × 𝑟𝑎𝑛𝑑) − sin(2 × 𝜋 × 𝑟𝑎𝑛𝑑)) 

(13) 

When 𝑄 ≤  (𝐶3 +  1)/ 2, the crayfish are just interested in 

approaching and immediately devouring the food: 

𝑋𝑖.𝑗
𝑡+1 = (𝑋𝑖.𝑗

𝑡 − 𝑋𝑓𝑜𝑜𝑑) × 𝑃 + 𝑃 × 𝑟𝑎𝑛𝑑 ×, 𝑋𝑖.𝑗
𝑡       (14) 

Crayfish use a range of feeding strategies during the 
foraging stage, depending on the size of their meal 𝑄, the 
most effective strategy is using the food 𝑋𝑓𝑜𝑜𝑑 . The crayfish 

will come over and eat it when it is tiny enough. A large 
value for 𝑄 suggests a substantial discrepancy between the 
optimal solution and the actual situation. 𝑋𝑓𝑜𝑜𝑑  must thus be 

lowered and moved closer to the food source. COA will 
advance towards the best option during the foraging phase, 
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increasing the scheme's potential for exploitation and 
encouraging notable convergence [29]. 

B. Flow Direction Algorithm (FDA) 

The quantity of precipitation that falls on the surface of 
the land without penetrating the soil is referred to as excess 
or effective rainfall in a drainage basin. After precipitation, 
this is essentially the water that remains on the surface (direct 
runoff), taking into account losses from evapotranspiration, 
infiltration, and interception. Various methods have been 
proposed thus far to determine direct runoff, one of which is 
the ϕ-index method [30]. 

The index ϕ, expressed in cm/hr., indicates the average 
amount of water lost during rainfall. Rainfall that falls above 
this level turns into runoff right away. In other words, the 
high-level total of the index ϕ equals the height of the direct 
runoff. Subtracting the index ϕ from the rainfall at each time 
period yields the direct runoff. 

Fig. 3 presents the idea of the ϕ-index [31]. The direct 
runoff calculation method is expressed as follows: 

𝑟𝑑=∑ (𝑟𝑚 −𝜙∆𝑡)𝑀
𝑚=1    (13) 

where the parameters 𝑟𝑑, 𝑟𝑚, 𝛥𝑡, and 𝑀 indicate in that order, 
the amounts of rainfall, time interval, number of time steps, 
and direct runoff. 

Precipitation losses, including infiltration, 
evapotranspiration, and interception, are deducted from the 
total precipitation to calculate direct runoff. The slope of the 
terrain determines how this runoff travels to the basin's exit. 
The drainage basin can be divided into multiple cells to 
simulate this process, with each cell transferring its runoff to 
neighbouring cells based on their height and slope. 

The D8 approach [34], which makes the assumption that 
flow goes to one of the eight surrounding cells [35], is one of 
the most used techniques for estimating runoff direction. 
Every cell has eight neighbors with this method, and each 
neighbor has a unique height and distance from the cell. The 
direction of flow is determined by calculating the height and 
distance disparities between each cell and its surrounding 
cells. 

 

Fig. 3. Ø-index diagram 

The flow from each cell is then directed towards the cell 
with the steepest slope once the slope of each cell is 
ascertained. Fig. 4 shows the flow pattern as well as the eight 
surrounding cells. Fig. 5 depicts the D8 technique's schematic 
design. 

Lastly, the flow direction throughout the basin is 
ascertained by using the D8 algorithm. Following the 
specification of the flow direction, a value representing the 
number of cells flowing into each cell is considered, with the 
maximum number occurring at the basin output point. A cell 
is also said to have a depression (or hole) if it needs to be 
filled and has a lower height than the cells around it. Fig. 6 
illustrates the location of a depression inside a canal. 

 

Fig. 4. Flow and the eight positions around it 

1) Principal Concept 
After rainfall is transformed to runoff, the FDA algorithm 

estimates the direction of flow in a drainage basin using the 
D8 technique. Initially, this process creates a population in 
the problem's drainage basin or search space. The flows then 
go in that direction in an attempt to achieve the optimal 
solution or the lowest altitude outlet point. 

The execution of the algorithm is based on the following 
assumptions: 

1. Every flow has a precise height and place. 

2. Every flow is surrounded by β locations, each with 
an objective function or height. 

3. There is a strong correlation between slope and flow 
movement velocity. 

4. The flow moves in the direction of the lowest 
altitude with a velocity V. 

5. The basin departure point is determined by the flow 
position that has the best objective function. 

 

Fig. 5. Diagram showing the D8 technique and the movement of flow to 

the basin's exit 
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Fig. 6. Sink placement both before and after filling 

The neighborhood radius Δ, population number α, and 
number of neighbors β make up the algorithm's initial 
parameters. The equation below is utilized in relation to the 
FDA algorithm in order to ascertain the flowing beginning 
position: 

𝐹𝑙𝑜𝑤−𝑋(𝑖) = 𝑙𝑏 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏 − 𝑙𝑏)  (16)  

If the position flow is represented by 𝐹𝑙𝑜𝑤−𝑋(𝑖), then the 
lower and upper bounds of the decision variables are denoted 
by 𝑙𝑏 and 𝑢𝑏, respectively, and a random value uniformly 
distributed between zero and one is represented by rand. 
Furthermore, it is believed that every flow has 
𝛽 neighbourhoods, whose locations are established by the 
connection given below: 

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_ 𝑋(𝑗) = 𝐹𝑙𝑜𝑤_ 𝑋(𝑖) + 𝑟𝑎𝑛𝑑𝑛 × ∆       (17) 

Neighbor_ X denotes the location of the jth neighbor, and 
randn random number with a standard deviation of one, a 
mean of zero, and a normal distribution. A small value of Δ 
results in a narrower search range, whereas a big value of Δ 
opens up a wider range of possible search results. Finding 
near-optimal solutions is more likely when a broad search is 
conducted (global search). 

It is imperative to strike a balance between these two 
strategies: A more concentrated search radius makes it easier 
to locate the global optimal solution more precisely when the 
algorithm's solutions approach the global optimum (local 
search). If one uses solely global search operators, the 
algorithm might not be able to locate the global optimum 
precisely enough. On the other hand, the algorithm may 
become stuck in local optima if just local search is carried 
out. 

In order to balance local and globally search, this work 
employs a formula that linearly decreases the value of Δ from 
large too small. This ensures greater variation and directs the 
search towards random positions. 

∆= (𝑟𝑎𝑛𝑑 × 𝑋𝑟𝑎𝑛𝑑 − 𝑟𝑎𝑛𝑑 × 𝐹𝑙𝑜𝑤__𝑋(𝑖)) ×∥ 𝐵𝑒𝑠𝑡__𝑋 − 𝐹𝑙𝑜𝑤__𝑋(𝑖) ∥×𝑊   (18) 

𝑊 is a nonlinear weight with a random integer between 0 and 
∞, 𝑋𝑟𝑎𝑛𝑑 is a random location generated by relation (15), 
and 𝑟𝑎𝑛𝑑 is a random number with a uniform distribution. 

The first term of this connection states that 𝐹𝑙𝑜𝑤__𝑋(𝑖) goes 

to a random place (𝑋𝑟𝑎𝑛𝑑).  

As the number of iterations increases in the second term, 
the Euclidean distance between 𝐵𝑒𝑠𝑡__𝑋 and 𝐹𝑙𝑜𝑤__𝑋(𝑖) 
decreases to zero, making local search impossible. The third 
term's 𝑊 computation looks like this: 

𝑊 = ((1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟
)
(2×𝑟𝑎𝑛𝑑𝑛)

) × (𝑟𝑎𝑛𝑑̅̅ ̅̅ ̅̅ ̅ ×
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟
) × 𝑟𝑎𝑛𝑑̅̅ ̅̅ ̅̅ ̅ 

(19) 

where  𝑟𝑎𝑛𝑑̅̅ ̅̅ ̅̅ ̅ is random vector has a uniform distribution. 

The flow moves towards the neighbor with the lowest 
goal function at a speed of V, as was previously mentioned. 
Moreover, the slope has a direct impact on the flow's velocity 
towards its neighbours. As a result, the flow velocity vector 
can be found using the following equation: 

𝑉 = 𝑟𝑎𝑛𝑑𝑛 × 𝑆0    (20) 

where S_0 is sloping vector between the flow's neighbour 
and current position. The global search space is enlarged and 
a variety of solutions are generated by the random number 
generator, or randn. The slope vector of the ith flow with 
respect to its jth neighbour can be found using the following 
equation: 

𝑆0 =
𝐹𝑙𝑜𝑤−𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖)−𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟−𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑗)

∥𝐹𝑙𝑜𝑤−𝑥(𝑖,𝑑)−𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟−𝑥(𝑗,𝑑)∥
   (21) 

where 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟−𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑗) and 𝐹𝑙𝑜𝑤−𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖),  represent, 
respectively, the flow i's and the neighbor 𝑗's goal values. The 
parameter d indicates the dimensions of the problem. The 
new position of the flow is found using the following 
formula: 

𝐹𝑙𝑜𝑤−𝑛𝑒𝑤𝑋(𝑖) = 𝐹𝑙𝑜𝑤−𝑋(𝑖) + 𝑉 ×
𝐹𝑙𝑜𝑤−𝑋(𝑖)−𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟−𝑋(𝑗)

∥𝐹𝑙𝑜𝑤−𝑥(𝑖)−𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟−𝑥(𝑗)∥
       (22) 

where 𝐹𝑙𝑜𝑤−𝑛𝑒𝑤𝑋(𝑖).represents flow i's new location. 

It is crucial to remember that any neighbor's objective 
function must be less than the flow's own in order to identify 
the direction of flow. This idea is comparable to how a 
washbasin fills. To simulate this circumstance, the FDA 
technique randomly chooses a new flow, which moves in the 
direction of the present flow if its objective function is lower. 
If not, it will travel in the direction of the slope that is most 
prevalent. The way to describe the flow direction under these 
conditions is shown by the following equation: 

{
 
 

 
 

 𝑖𝑓 𝐹𝑙𝑜𝑤−𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑟) <  𝐹𝑙𝑜𝑤−𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) 

𝐹𝑙𝑜𝑤−𝑛𝑒𝑤𝑋(𝑖) = 𝐹𝑙𝑜𝑤−𝑋(𝑖) + 𝑟𝑎𝑛𝑑𝑛̅̅ ̅̅ ̅̅ ̅̅  × (𝐹𝑙𝑜𝑤−𝑋(𝑟) − 𝐹𝑙𝑜𝑤−𝑋(𝑖))

𝑒𝑙𝑠𝑒
𝐹𝑙𝑜𝑤−𝑛𝑒𝑤𝑋(𝑖) = 𝐹𝑙𝑜𝑤−𝑋(𝑖) + 2𝑟𝑎𝑛𝑑𝑛 × (𝐵𝑒𝑠𝑡−𝑋 − 𝐹𝑙𝑜𝑤−𝑋(𝑖))

𝑒𝑛𝑑

 

(23) 

where 𝑎 is a random integer. 

IV. WSN LOCALIZATION PROBLEM FORMULATION 

The problem of localization for wireless sensor network 
nodes may be defined as a single hop range-based 
distribution strategy, which involves estimating the target 
(unknown) nodes'(X, Y) position with the help of the main 
nodes' coordinates (x,y), which act the location of the known 
nodes. Because main nodes come with GPS unit, they can 
figure out where they are on their own. Because GPS is so 
expensive, the majority of WSN nodes are not outfitted with 
it. The steps used are shown below in order to calculate the 
coordinates of the N target (unknown) nodes. 

Step 1: Within communication range (R), randomly 
establish M anchor nodes and N unknown nodes. Anchor 
nodes use positional awareness to tell their neighbours their 
coordinates. The node that settles at the conclusion of each 
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cycle is referred to as the reference node, and it serves as the 
anchor node. 

Step 2: A node is deemed localized if 3 or more main 
(anchor) nodes are present inside the range of its connection. 

Step 3: Assign (x,y) to the target node's coordinates and di 
to the separation between both of target (un known) and ith 
anchor (main) node.  

𝑑𝑖 =  √(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2   (25) 

Step 4: The localization problem's error is minimized by 
formulating the optimization problem. The localization 
problem's objective function is expressed as: 

𝑓(𝑥, 𝑦) = 𝑚𝑖𝑛 (∑ (√(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2)
2

𝑀
𝑖=1 )  (26) 

where 𝑀 denotes main nodes that are inside the target node's 
transmission range. 

Step 5: After determining each unknown localized node 
(N_L), the total error of localization is computed as mean 
square of the difference between the predestined and the 
really coordinates node xi, yi, for i = 1,2, 3... NL:  

𝐸𝐿 =
1

𝑁𝐿
∑ (√(𝑥𝑖 − 𝑋𝑖)

2 + (𝑦𝑖 − 𝑌𝑖)
2)𝐿

𝑖=1         (27) 

Step 6: Go back to step 2 and repeat through 5 till no 
more nodes can be located or until all unknown/target nodes 
have been localized. 

V. EXPERIMENTAL ANALYSIS 

This section compares the performance of the proposed 
WSN schemes in terms of localization error and localization 
time. The strategy is assessed under different situations. The 
calculation of various algorithms is performed using 
MATLAB R22021b on Intel Core (TM) i5 CPU, Windows10 
operating system and 8 GB RAM. The parameters of the 
shipping point values are shown in Table 1. 

TABLE I.  THE SETTING OF THE PARAMETERS 

The Parameters The Values 
The target (un known) nodes differ on ∑ k ∗ 256

𝑘=1  
The main (anchor) nodes differ with increase k=k+5 
Range of transmission 30 meters 
Space of work 100 meters × 100 meters 

VI. THE COMPARISON BETWEEN SCHEMES 

In this part, DFT and COA schemes have been examined 
regard to the time of localization, and the error of localization 
under various conditions. Table 2 displays the outcomes of 
the two schemes that were obtained. 

TABLE II.  COMPRESSION OF THE TWO LOCALIZATION SCHEMES 

RESULTS 

No. of 

target 

nodes 

No. of 

anchor 

nodes 

No. of 

iteratio

n 

COA DFT 

Time (s) 𝑬𝑳 Time (s) 𝑬𝑳 

 
25               10 

25 27.72 0.0385 23.10 0.0345 

50 53.28 0.0382 48.23 0.0339 

75 82.60 0.0340 69.41 0.0322 

100 109.82 0.0335 93.96 0.0322 

 

50               15 

25 111.24 0.0134 51.55 0.0130 

50 199.76 0.0132 111.26 0.0122 

75 271.70 0.0134 160.42 0.0118 

100 361.58 0.0132 229.97 0.0113 

No. of 

target 

nodes 

No. of 

anchor 

nodes 

No. of 

iteratio

n 

COA DFT 

Time (s) 𝑬𝑳 Time (s) 𝑬𝑳 

 

75                20 

25 182.01 0.0112 93.72 0.0100 

50 460.54 0.0110 184.91 0.0092 

75 603.20 0.0107 276.38 0.0079 

100 840.81 0.0100 387.93 0.0075 

 

100               25 

25 413.52 0.0069 154.47 0.0069 

50 788.64 0.0060 269.26 0.0069 

75 1003.72 0.0055 419.31 0.0044 

100 1298.42 0.0050 576.58 0.0035 

125               30 

25 627.58 0.0029 202.47 0.0029 

50 1180.40 0.0027 396.33 0.0027 

75 1617.52 0.0018 578.22 0.0018 

100 2398.37 0.0015 719.72 0.0015 

 
150               35 

25 699.08 0.0030 243.85 0.0011 

50 1295.98 0.0028 518.05 0.0011 

75 1968.03 0.0022 788.95 0.0010 

100 3254.45 0.0018 
1034.6

1 
0.0010 

 
It is shown that for the localization strategies, in all cases 

(the number of the unknown (target) nodes and the number of 
the main (anchors) nodes), increasing in iteration leads to a 
reduction in localization error, but an increase in the number 
of localizations and computation time. This seems to cover 
the goal, as more iterations equal more calculations and take 
longer to complete. On the contrary, the greater the number 
of actions, the more likely we are to reach a better solution. 
As a result, there are more localized nodes and the 
localization error value that explains the location error (E_L) 
for relation between these main and unknown nodes. 
However, as the number of targets and anchors increases, it 
turns out that DFT outperform COA in this area. Regard to 
the computation time, it was observed that increase number 
for both target (un known) and anchor (main) nodes increases 
time of computing for the whole localization’s schemes. But 
still: Compared with COA, DFT's computation time is better. 
The next two figures show schematic diagrams of 
experiments conducted at different scales. 

 

Fig. 7. The mean localization error of the localization algorithms across 

many deployments of wireless sensor networks 
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Fig. 8. The computation time of various algorithms in various Wireless 

Sensor Network configurations 

VII. CONCLUSION 

Precise node placement is a major challenge for many 
WSN adoption applications. In this work, the node 
localization problem was approached as an optimization 
problem, and a node localization technique was developed 
using the Flow Direction Algorithm and Crayfish 
Optimization Algorithm, two unique bioinspired algorithms. 
The proposed schemes have been executed and checked on 
many WSN installations with different numbers of unknown 
and main nodes. Additionally, the suggested schemes have 
been compared in terms of time of localization and 
localization error. Experimental findings show that, with 
respect to the different performance criteria, the Flow 
Direction Algorithm performs better than the other 
localization scheme. 
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