
136

Performance Analysis of DFT and COA Algorithms

for Wireless Sensor Network Node Localization

Dhuha Gh. Kadhum

Computer department

University of Diyala

Diyala, Iraq

scicompms222311@uodiyala.edu.iq

Muntadher Khamees

Computer department

University of Diyala

Diyala, Iraq

alkarawis@gmail.com

Abstract— In a wireless sensor network, nodes localization

seeks to use known (main or anchor) nodes to help detect the

locations of the unknown (target) nodes. The localization

accuracy can have a big impact on a WSN's performance. This

paper suggests a strategy for node localization based two

recently developed bioinspired algorithms, the Crayfish

Optimization Algorithm (COA) and the Flow Direction

Algorithm (FDA). In several WSN deployment scenarios, the

suggested techniques are contrasted with each other. On the

hand of localization error and time of computation, the testing

findings demonstrate that the suggested FDA localization

scheme outperforms the alternative localization technique.

Keywords— metaheuristic algorithms, WSN, anchor node,

target node, localization

I. INTRODUCTION

In recent years, wireless sensor networks (WSNs) have
drawn interest from all over the world, especially with the
growth of Micro-Electro-Mechanical Systems (MEMS)
technology, which has made the creation of smart sensors
easier [1]. a metaheuristic is an advanced process or heuristic
that is intended to locate, produce, adjust, or choose a
heuristic that could offer an adequate answer to an
optimization or machine learning issue [2] [3].

In the past several years, there have been numerous
research attempts on this issue among the scientific
community. It should be noted that the definition of
localization is the process of determining an unknown node's
position, either by employing connectivity information
between the unknown nodes or by utilizing nodes with
known positions. Recent research has examined how
movement affects localization.[4], [5], [6], real world
applications [7], [8], [9], “Anchor Free” and “Anchor Based”
localization techniques [10], “Range Based and Range Free”
schemes of localization [11], “Non-Cooperative” schemes—
where the target nodes only connect with the anchor nodes—
and “Cooperative” algorithms—where communication
occurs among all nodes[12], “The centralized” scheme
localization and “the distributed” scheme, which uses locally
collected information to determine each node's position
without central supervision.[13][14]. This paper's primary
contribution is the first-ever localization of WSN nodes
utilizing the DFT and the COA. Analysis and comparison are
conducted between these schemes.

Regarding to the time of computing and localization
error, results showed that the DFT-based localization
schemes outperform the COA localization scheme. The
paper's remaining sections are arranged as follows: A
selection of the field research projects is covered in
Section 2. A brief overview of the swim algorithms used in
this work is given in Section 3. The suggested DFT and
COA-based localization schemes are presented in Section 4.

The findings analysis and conducted experiments are
included in Section 5. In Section 6, the paper is finally
concluded.

II. LITERATURE REVIEW

Numerous optimization strategies have been used in
recent years to solve the node localization issue in WSNs. A
brief description and coverage of a few recent pertinent
works are provided in this section.

In 2020, Rong Tan and etc.., developed and implemented
the DMA node localization algorithm, by, demonstrates its
sensor node localization theory and presents a potential
foundation for placement to be realized in WSNs and the
results showed that the suggested strategy performing are
better for energy consumption and accuracy of localization
than other popular approaches, which presents a chance to
meet the need for high-precision sensor node localization in
the development of WSNs [15].

In 2020, Drs. D. Chandirasekaran and S. Sugumaran tried
to determine the nodes' positions Using experiments and
simulations, using Cat Swarm Optimization (CSO), a novel
swarm-based optimization technique modelled after the
behaviour of cats and Results using the CSO algorithm have
been found to be significantly better than those obtained
using Particle Swarm Optimization (PSO), another well-
known swarm-based optimization approach. The CSO
algorithm's fast searching feature made it possible to locate
wireless sensor network node localization more quickly
while maintaining the highest level of positioning accuracy
and stability [16].

In 2020, Sana Messous and Hend Liouane introduced An
Online Sequential DV-Hop technique to improve accuracy
localization node to multihop WSNs by progressively
calculating node positions. The simulation results
demonstrate that the suggested algorithm notably decreases
the average localization error of sensor nodes when
compared to the original DV-Hop and other localization
techniques discussed in the literature [17].

In 2021, Pudi Sekhar and etc.., was developed effective
metaheuristic group learning optimization scheme for
localization the node GTOA/NL scheme for Wireless sensor
network SN-enabled indoor communication. The results
obtained guarantee that the model does best than another
technique in different transmission range, ranging error, and
the number of main nodes [17].

In 2021, Sana Messous and etc.., suggested an updated
version of the technique for less the significant error of
localization in original DV/Hop scheme. According to
experimental findings, the suggested localization method
increases localization accuracy while reducing localization
error [17].

mailto:scicompms222311@uodiyala.edu.iq

137

In 2022, Himanshu and etc.., showed by using a single
mobile anchor node, artificial intelligence applications for
target node placements in WSNs. To detect ideal locations
for target nodes, the following methods are applied
independently: Firefly Algorithm (FA), Hybrid PSO (HPSO),
and Particle Swarm Optimization (PSO) and the findings
demonstrate that, in comparison to current methods, the
suggested schemes do best on the hand of energy, time of
convergence, and the accuracy [18].

In 2022, Wenyan Liu et al. suggested a node localization
technique depend on the strategy location of main node
selection to more effectively address the conflict between the
placement of anchor nodes in wireless sensor networks,
localization accuracy, and coverage of localization. The
suggested technique outperforms the standard algorithms that
are already in use in terms of localization coverage and
accuracy, according to the result [19].

In 2023, Yuxiao Cao and etc.., colleagues introduced a
DV Hop based location scheme for WSNs that makes use of
optimal anchor nodes subsets and the outcomes show that, in
a variety of network scenarios, the OANS DV Hop scheme
has a better accuracy of localization than both the first DV
Hop and other enhanced DV Hop schemes [20].

In 2023, Bahadur and etc.., introduced a novel genetic
algorithm-based approach to optimize energy usage in
wireless sensor networks. The comparison's findings
suggested that these logarithms and techniques might lessen
that energy, albeit to different degrees. It has been found that
using the recommended methods could result in a 50%
decrease in energy use [21].

In 2023, The Multi-population Firefly Algorithm Based
Node Deployment in Underwater Wireless Sensor Networks,
which Annapurna presented, demonstrates how MFA may
produce more residual energy and improved deployment
accuracy with lower error and expense [22].

III. INTELLIGENT SWARM ALGORITHMS

The collective activities of self-organized systems are the
foundation of intelligence of swarm. Ant Colony System
(ACS), Artificial Bee Colony (ABC), Bacteria Foraging
(BF), Stochastic Diffusion Search (SDS), Particle Swarm
Optimization (PSO)… and other common SI systems are
examples. In addition to its applications in traditional
optimization problems, SI may also be utilized in the control
of robotics and unmanned vehicles, prediction of social
behaviours, improvement of communications and computer
networks, and more. Swarm optimization can be effectively
utilized in several domains such as engineering and social
sciences [23][24]. In this work, we examine two swarm
intelligence schemes for optimization problems and several
comparisons are made between these algorithms.

A. Crayfish Optimization Algorithm (COA)

The crayfish has a hard shell and resembles a shrimp. It is
a member of the Decapoda, Crustacea, and Arthropoda
groups in animal taxonomy. It is typically regarded as an
important species for freshwater habitats [25]. The behaviors
of crayfish during foraging, summer vacations, and
competition inspire the COA. COA's exploitation stages
include foraging and competition, while the exploration
stages are represented by the summer resort periods. At the
start of the process, the crawfish colony X is defined to
represent the features of swarm intelligence optimization.
The ith crayfish's location, Xi, denotes a solution. (Xi =
{Xi,1, Xi,1, Xi,1...Xi,dim}, where dim, usually referred to as

dimension, is the characteristic quantity of the optimisation
issue). The function f (·) is introduced by Xi in order to get
the fitness value, or solution [26]. Temperature, a random
constant representing the environmental temperature,
regulates COA's exploration and exploitation. When
temperature rises very high, COA enters summer resort stage
or the competitive. In summer resort stage, the new solution
is updated based on the cave position Xshade and the
individual position Xi. When the temperature is optimal,
COA transitions to the foraging stage. During foraging, the
best position or optimal solution is where the food is located.

Food size is determined by the current solution,
fitnessfood (obtained by the best or optimal solution), and the
optimal solution, fitness (obtained by Xi). Crayfish obtain
new foods based on their position (Xi), food position
(Xfood), and food intake (constant p) when the food is
suitable. The crayfish divides up enormous meals with its
claw foot and then eats with its second and third walking
feet, alternately [26].

Fig. 1. Structure diagram of COA [26]

1) Initialization of population
Every crayfish in the multidimensional optimization

problem is represented by a 1 × dim matrix. Each column
matrix represents the problem's solution. The upper and
lower bounds of the set of variables (Xi,1, Xi, 2..., Xi,dim)
must contain all of the variables Xi.

A set of potential solutions X is randomly generated as
the COA's initialization in the space.

It is suggested that the solution candidate X be used
depended on the number of the population N and the
dimension of area dim [27]. The initialization of COA
scheme is showed in Equation (1).

𝑋 = [𝑋1, 𝑋2, … , 𝑋𝑁] =

[

𝑋1,1 … 𝑋1,𝑗 … 𝑋1,𝑑𝑖𝑚

⋮ ⋯ ⋮ … ⋮

𝑋𝑖,1 … 𝑋𝑖,𝑗 … 𝑋𝑖,𝑑𝑖𝑚
⋮ ⋯ ⋮ … ⋮

 𝑋𝑁,1 … 𝑋𝑁,𝑗 … 𝑋𝑁,𝑑𝑖𝑚]

 (1)

where 𝑁 is populations number, 𝑑𝑖𝑚 is dimension of the
population, and 𝑋𝑖,𝑗 describes the location of individual 𝑖 in

the 𝑗 dimension. The value of 𝑋𝑖,𝑗 is obtained from Equation

(2).

𝑋𝑖,𝑗 = 𝑙𝑏𝑗 + (𝑢𝑏𝑗 − 𝑙𝑏𝑗) × 𝑟𝑎𝑛𝑑 (2)

where 𝑟𝑎𝑛𝑑 is a random number and 𝑙𝑏𝑗 and 𝑢𝑏𝑗 denote the

lower and upper bounds of the 𝑗𝑡ℎ dimension, respectively
[28].

138

2) Define the temperature and feed of crayfish
Crayfish will exhibit behavioral changes and progress

through distinct stages due to temperature shifts. Equation (3)
defines temperature. When the temperature reaches above
30°C in the summer, crayfish will choose a cool location.
When the temperature is right again, the crayfish will resume
feeding. The quantity of crayfish that feed is influenced by
temperature. The optimal feeding range for crayfish is
between 15 and 30 degrees Celsius. As a result, it is possible
to roughly estimate how much crayfish to feed according to
their regular distribution, with temperature having an impact.
Because between 20 and 30 °C, crayfish exhibit robust
feeding behavior. As a result, the COA specifies a
temperature range of 20 to 35 °C [26]. Equation (4) displays
the crayfish intake mathematical model.

𝑡𝑒𝑚𝑝 = 𝑟𝑎𝑛𝑑 × 15 + 20 (3)

where temp, is the crayfish's location's temperature.

𝑝 = 𝐶1 × (
1

√2×𝜋∗𝜎
× 𝑒𝑥𝑝 (−

(𝑡𝑒𝑚𝑝−𝜇)2

2𝜎2
)) (4)

Among them, μ denotes the perfect crayfish temperature,
and C_1 and σ are utilized to organize crayfish intake in
various temperatures.

3) Stage of summer resort (exploratory phase)
The crayfish take sanctuary in a cave during their summer

season when the temperature rises beyond thirty degrees.

Here is how the cave 𝑋𝑠ℎ𝑎𝑑𝑒 is described:

𝑋𝑠ℎ𝑎𝑑𝑒 = (𝑋𝐺 + 𝑋𝐿)/2 (5)

where XL denotes the optimal position of the current
population and X_G is the optimal position reached thus far
based on the number of iterations.

Random fights break up between crayfish over caverns.
The crawfish will enter the cave unhindered and be prepared
for summer when rand is less than 0.5, which means that no
other crawfish are vying for the cave. The crayfish plans to
spend the summer in the cave by using (6) [29].

𝑋𝑖.𝑗
𝑡+1 = 𝑋𝑖.𝑗

𝑡 + 𝐶2 × 𝑟𝑎𝑛𝑑 × (𝑋𝑠ℎ𝑎𝑑𝑒 − 𝑋𝑖.𝑗
𝑡) (6)

According to (7), C2 is a declining curve, where t denotes
the iteration number of the current generation and t+1 the
iteration number of the next generation.

𝐶2 = 2 − (𝑡/𝑇) (7)

where 𝑇 is the maximum number of iterations that are
permitted.

Crayfish try to go to the cave, which stands for the best
course of action, as they progress through the Summer Resort
stage. The crayfish will now begin to migrate in the direction
of the cave, increasing COA's potential for exploitation and
bringing them closer to the best course of action [30]. This
procedure helps the algorithm to converge more quickly.

4) The Exploitation Phase, or Competition Stage
When rand ≥ 0.5 and temp > 30, it indicates that other

crayfish are interested in the cave. They are going to battle
over who gets to keep the cave. Equation (8) is used by the
crayfish to compete for the cave [27].

𝑋𝑖.𝑗
𝑡+1 = 𝑋𝑖.𝑗

𝑡 − 𝑋𝑧.𝑗
𝑡 + 𝑋𝑠ℎ𝑎𝑑𝑒 (8)

where according to equation (9), 𝑧 stands for the random
individual of crayfish.

𝑧 = 𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑 × (𝑁 − 1)) + 1 (9)

During the Competition stage, crayfish compete with one
another.

with crayfish 𝑋𝑖 changing positions in reaction to 𝑋𝑧′𝑠
position. This positioning change expands COA's search
range, which strengthens the algorithm's capacity for
exploration [26].

5) Phase of foraging (exploitation)
It's best to feed crayfish when the temperature is below

thirty degrees. The crayfish will start to move towards the
food. Once they've located it, they'll measure it. The crayfish
will use their claws to break up huge prey before using their
second and third walking legs to eat it [30]. X_food is a food
location that is described as:

𝑋𝑓𝑜𝑜𝑑 = 𝑋𝐺 (10)

Q represent the food size that defined as:

𝑄 = 𝐶3 × 𝑟𝑎𝑛𝑑 × (𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖/𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑜𝑜𝑑) (11)

The food component, 𝐶3, always has a value of 3, which

stands for the largest food. The 𝑖𝑡ℎ crayfish's fitness value is

indicated by the notation 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 , but the food location's

fitness value is shown as 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑜𝑜𝑑.

Fig. 2. (a) Before eating, crayfish shred their food. (b) Crayfish consume
food right away [26]

The crayfish will use its first claw foot, as shown in
Fig. 2(a), to break down the meal. The following is the
mathematical formula [29]:

𝑋𝑓𝑜𝑜𝑑 = 𝑒𝑥𝑝 (−
1

𝑄
) × 𝑋𝑓𝑜𝑜𝑑 , (12)

The food will be picked up and put in the mouth using the
second and third paws as it gets smaller and shreds. Using
simulation, the alternating process is recreated by combining
the sine and cosine functions. As shown in Fig. 2(b).
Additionally, because crayfish intake and food availability
are correlated, the foraging equation is as follows:

𝑋𝑖.𝑗
𝑡+1 = 𝑋𝑖.𝑗

𝑡 +𝑋𝑓𝑜𝑜𝑑 × 𝑃 × (cos(2 × 𝜋 × 𝑟𝑎𝑛𝑑) − sin(2 × 𝜋 × 𝑟𝑎𝑛𝑑))

(13)

When 𝑄 ≤ (𝐶3 + 1)/ 2, the crayfish are just interested in

approaching and immediately devouring the food:

𝑋𝑖.𝑗
𝑡+1 = (𝑋𝑖.𝑗

𝑡 − 𝑋𝑓𝑜𝑜𝑑) × 𝑃 + 𝑃 × 𝑟𝑎𝑛𝑑 ×, 𝑋𝑖.𝑗
𝑡 (14)

Crayfish use a range of feeding strategies during the
foraging stage, depending on the size of their meal 𝑄, the
most effective strategy is using the food 𝑋𝑓𝑜𝑜𝑑 . The crayfish

will come over and eat it when it is tiny enough. A large
value for 𝑄 suggests a substantial discrepancy between the
optimal solution and the actual situation. 𝑋𝑓𝑜𝑜𝑑 must thus be

lowered and moved closer to the food source. COA will
advance towards the best option during the foraging phase,

139

increasing the scheme's potential for exploitation and
encouraging notable convergence [29].

B. Flow Direction Algorithm (FDA)

The quantity of precipitation that falls on the surface of
the land without penetrating the soil is referred to as excess
or effective rainfall in a drainage basin. After precipitation,
this is essentially the water that remains on the surface (direct
runoff), taking into account losses from evapotranspiration,
infiltration, and interception. Various methods have been
proposed thus far to determine direct runoff, one of which is
the ϕ-index method [30].

The index ϕ, expressed in cm/hr., indicates the average
amount of water lost during rainfall. Rainfall that falls above
this level turns into runoff right away. In other words, the
high-level total of the index ϕ equals the height of the direct
runoff. Subtracting the index ϕ from the rainfall at each time
period yields the direct runoff.

Fig. 3 presents the idea of the ϕ-index [31]. The direct
runoff calculation method is expressed as follows:

𝑟𝑑=∑ (𝑟𝑚 −𝜙∆𝑡)𝑀
𝑚=1 (13)

where the parameters 𝑟𝑑, 𝑟𝑚, 𝛥𝑡, and 𝑀 indicate in that order,
the amounts of rainfall, time interval, number of time steps,
and direct runoff.

Precipitation losses, including infiltration,
evapotranspiration, and interception, are deducted from the
total precipitation to calculate direct runoff. The slope of the
terrain determines how this runoff travels to the basin's exit.
The drainage basin can be divided into multiple cells to
simulate this process, with each cell transferring its runoff to
neighbouring cells based on their height and slope.

The D8 approach [34], which makes the assumption that
flow goes to one of the eight surrounding cells [35], is one of
the most used techniques for estimating runoff direction.
Every cell has eight neighbors with this method, and each
neighbor has a unique height and distance from the cell. The
direction of flow is determined by calculating the height and
distance disparities between each cell and its surrounding
cells.

Fig. 3. Ø-index diagram

The flow from each cell is then directed towards the cell
with the steepest slope once the slope of each cell is
ascertained. Fig. 4 shows the flow pattern as well as the eight
surrounding cells. Fig. 5 depicts the D8 technique's schematic
design.

Lastly, the flow direction throughout the basin is
ascertained by using the D8 algorithm. Following the
specification of the flow direction, a value representing the
number of cells flowing into each cell is considered, with the
maximum number occurring at the basin output point. A cell
is also said to have a depression (or hole) if it needs to be
filled and has a lower height than the cells around it. Fig. 6
illustrates the location of a depression inside a canal.

Fig. 4. Flow and the eight positions around it

1) Principal Concept
After rainfall is transformed to runoff, the FDA algorithm

estimates the direction of flow in a drainage basin using the
D8 technique. Initially, this process creates a population in
the problem's drainage basin or search space. The flows then
go in that direction in an attempt to achieve the optimal
solution or the lowest altitude outlet point.

The execution of the algorithm is based on the following
assumptions:

1. Every flow has a precise height and place.

2. Every flow is surrounded by β locations, each with
an objective function or height.

3. There is a strong correlation between slope and flow
movement velocity.

4. The flow moves in the direction of the lowest
altitude with a velocity V.

5. The basin departure point is determined by the flow
position that has the best objective function.

Fig. 5. Diagram showing the D8 technique and the movement of flow to

the basin's exit

140

Fig. 6. Sink placement both before and after filling

The neighborhood radius Δ, population number α, and
number of neighbors β make up the algorithm's initial
parameters. The equation below is utilized in relation to the
FDA algorithm in order to ascertain the flowing beginning
position:

𝐹𝑙𝑜𝑤−𝑋(𝑖) = 𝑙𝑏 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏 − 𝑙𝑏) (16)

If the position flow is represented by 𝐹𝑙𝑜𝑤−𝑋(𝑖), then the
lower and upper bounds of the decision variables are denoted
by 𝑙𝑏 and 𝑢𝑏, respectively, and a random value uniformly
distributed between zero and one is represented by rand.
Furthermore, it is believed that every flow has
𝛽 neighbourhoods, whose locations are established by the
connection given below:

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_ 𝑋(𝑗) = 𝐹𝑙𝑜𝑤_ 𝑋(𝑖) + 𝑟𝑎𝑛𝑑𝑛 × ∆ (17)

Neighbor_ X denotes the location of the jth neighbor, and
randn random number with a standard deviation of one, a
mean of zero, and a normal distribution. A small value of Δ
results in a narrower search range, whereas a big value of Δ
opens up a wider range of possible search results. Finding
near-optimal solutions is more likely when a broad search is
conducted (global search).

It is imperative to strike a balance between these two
strategies: A more concentrated search radius makes it easier
to locate the global optimal solution more precisely when the
algorithm's solutions approach the global optimum (local
search). If one uses solely global search operators, the
algorithm might not be able to locate the global optimum
precisely enough. On the other hand, the algorithm may
become stuck in local optima if just local search is carried
out.

In order to balance local and globally search, this work
employs a formula that linearly decreases the value of Δ from
large too small. This ensures greater variation and directs the
search towards random positions.

∆= (𝑟𝑎𝑛𝑑 × 𝑋𝑟𝑎𝑛𝑑 − 𝑟𝑎𝑛𝑑 × 𝐹𝑙𝑜𝑤__𝑋(𝑖)) ×∥ 𝐵𝑒𝑠𝑡__𝑋 − 𝐹𝑙𝑜𝑤__𝑋(𝑖) ∥×𝑊 (18)

𝑊 is a nonlinear weight with a random integer between 0 and
∞, 𝑋𝑟𝑎𝑛𝑑 is a random location generated by relation (15),
and 𝑟𝑎𝑛𝑑 is a random number with a uniform distribution.

The first term of this connection states that 𝐹𝑙𝑜𝑤__𝑋(𝑖) goes

to a random place (𝑋𝑟𝑎𝑛𝑑).

As the number of iterations increases in the second term,
the Euclidean distance between 𝐵𝑒𝑠𝑡__𝑋 and 𝐹𝑙𝑜𝑤__𝑋(𝑖)
decreases to zero, making local search impossible. The third
term's 𝑊 computation looks like this:

𝑊 = ((1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟
)
(2×𝑟𝑎𝑛𝑑𝑛)

) × (𝑟𝑎𝑛𝑑̅̅ ̅̅ ̅̅ ̅ ×
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟
) × 𝑟𝑎𝑛𝑑̅̅ ̅̅ ̅̅ ̅

(19)

where 𝑟𝑎𝑛𝑑̅̅ ̅̅ ̅̅ ̅ is random vector has a uniform distribution.

The flow moves towards the neighbor with the lowest
goal function at a speed of V, as was previously mentioned.
Moreover, the slope has a direct impact on the flow's velocity
towards its neighbours. As a result, the flow velocity vector
can be found using the following equation:

𝑉 = 𝑟𝑎𝑛𝑑𝑛 × 𝑆0 (20)

where S_0 is sloping vector between the flow's neighbour
and current position. The global search space is enlarged and
a variety of solutions are generated by the random number
generator, or randn. The slope vector of the ith flow with
respect to its jth neighbour can be found using the following
equation:

𝑆0 =
𝐹𝑙𝑜𝑤−𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖)−𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟−𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑗)

∥𝐹𝑙𝑜𝑤−𝑥(𝑖,𝑑)−𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟−𝑥(𝑗,𝑑)∥
 (21)

where 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟−𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑗) and 𝐹𝑙𝑜𝑤−𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖), represent,
respectively, the flow i's and the neighbor 𝑗's goal values. The
parameter d indicates the dimensions of the problem. The
new position of the flow is found using the following
formula:

𝐹𝑙𝑜𝑤−𝑛𝑒𝑤𝑋(𝑖) = 𝐹𝑙𝑜𝑤−𝑋(𝑖) + 𝑉 ×
𝐹𝑙𝑜𝑤−𝑋(𝑖)−𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟−𝑋(𝑗)

∥𝐹𝑙𝑜𝑤−𝑥(𝑖)−𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟−𝑥(𝑗)∥
 (22)

where 𝐹𝑙𝑜𝑤−𝑛𝑒𝑤𝑋(𝑖).represents flow i's new location.

It is crucial to remember that any neighbor's objective
function must be less than the flow's own in order to identify
the direction of flow. This idea is comparable to how a
washbasin fills. To simulate this circumstance, the FDA
technique randomly chooses a new flow, which moves in the
direction of the present flow if its objective function is lower.
If not, it will travel in the direction of the slope that is most
prevalent. The way to describe the flow direction under these
conditions is shown by the following equation:

{

 𝑖𝑓 𝐹𝑙𝑜𝑤−𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑟) < 𝐹𝑙𝑜𝑤−𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖)

𝐹𝑙𝑜𝑤−𝑛𝑒𝑤𝑋(𝑖) = 𝐹𝑙𝑜𝑤−𝑋(𝑖) + 𝑟𝑎𝑛𝑑𝑛̅̅ ̅̅ ̅̅ ̅̅ × (𝐹𝑙𝑜𝑤−𝑋(𝑟) − 𝐹𝑙𝑜𝑤−𝑋(𝑖))

𝑒𝑙𝑠𝑒
𝐹𝑙𝑜𝑤−𝑛𝑒𝑤𝑋(𝑖) = 𝐹𝑙𝑜𝑤−𝑋(𝑖) + 2𝑟𝑎𝑛𝑑𝑛 × (𝐵𝑒𝑠𝑡−𝑋 − 𝐹𝑙𝑜𝑤−𝑋(𝑖))

𝑒𝑛𝑑

(23)

where 𝑎 is a random integer.

IV. WSN LOCALIZATION PROBLEM FORMULATION

The problem of localization for wireless sensor network
nodes may be defined as a single hop range-based
distribution strategy, which involves estimating the target
(unknown) nodes'(X, Y) position with the help of the main
nodes' coordinates (x,y), which act the location of the known
nodes. Because main nodes come with GPS unit, they can
figure out where they are on their own. Because GPS is so
expensive, the majority of WSN nodes are not outfitted with
it. The steps used are shown below in order to calculate the
coordinates of the N target (unknown) nodes.

Step 1: Within communication range (R), randomly
establish M anchor nodes and N unknown nodes. Anchor
nodes use positional awareness to tell their neighbours their
coordinates. The node that settles at the conclusion of each

141

cycle is referred to as the reference node, and it serves as the
anchor node.

Step 2: A node is deemed localized if 3 or more main
(anchor) nodes are present inside the range of its connection.

Step 3: Assign (x,y) to the target node's coordinates and di
to the separation between both of target (un known) and ith
anchor (main) node.

𝑑𝑖 = √(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 (25)

Step 4: The localization problem's error is minimized by
formulating the optimization problem. The localization
problem's objective function is expressed as:

𝑓(𝑥, 𝑦) = 𝑚𝑖𝑛 (∑ (√(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2)
2

𝑀
𝑖=1) (26)

where 𝑀 denotes main nodes that are inside the target node's
transmission range.

Step 5: After determining each unknown localized node
(N_L), the total error of localization is computed as mean
square of the difference between the predestined and the
really coordinates node xi, yi, for i = 1,2, 3... NL:

𝐸𝐿 =
1

𝑁𝐿
∑ (√(𝑥𝑖 − 𝑋𝑖)

2 + (𝑦𝑖 − 𝑌𝑖)
2)𝐿

𝑖=1 (27)

Step 6: Go back to step 2 and repeat through 5 till no
more nodes can be located or until all unknown/target nodes
have been localized.

V. EXPERIMENTAL ANALYSIS

This section compares the performance of the proposed
WSN schemes in terms of localization error and localization
time. The strategy is assessed under different situations. The
calculation of various algorithms is performed using
MATLAB R22021b on Intel Core (TM) i5 CPU, Windows10
operating system and 8 GB RAM. The parameters of the
shipping point values are shown in Table 1.

TABLE I. THE SETTING OF THE PARAMETERS

The Parameters The Values
The target (un known) nodes differ on ∑ k ∗ 256

𝑘=1
The main (anchor) nodes differ with increase k=k+5
Range of transmission 30 meters
Space of work 100 meters × 100 meters

VI. THE COMPARISON BETWEEN SCHEMES

In this part, DFT and COA schemes have been examined
regard to the time of localization, and the error of localization
under various conditions. Table 2 displays the outcomes of
the two schemes that were obtained.

TABLE II. COMPRESSION OF THE TWO LOCALIZATION SCHEMES

RESULTS

No. of

target

nodes

No. of

anchor

nodes

No. of

iteratio

n

COA DFT

Time (s) 𝑬𝑳 Time (s) 𝑬𝑳

25 10

25 27.72 0.0385 23.10 0.0345

50 53.28 0.0382 48.23 0.0339

75 82.60 0.0340 69.41 0.0322

100 109.82 0.0335 93.96 0.0322

50 15

25 111.24 0.0134 51.55 0.0130

50 199.76 0.0132 111.26 0.0122

75 271.70 0.0134 160.42 0.0118

100 361.58 0.0132 229.97 0.0113

No. of

target

nodes

No. of

anchor

nodes

No. of

iteratio

n

COA DFT

Time (s) 𝑬𝑳 Time (s) 𝑬𝑳

75 20

25 182.01 0.0112 93.72 0.0100

50 460.54 0.0110 184.91 0.0092

75 603.20 0.0107 276.38 0.0079

100 840.81 0.0100 387.93 0.0075

100 25

25 413.52 0.0069 154.47 0.0069

50 788.64 0.0060 269.26 0.0069

75 1003.72 0.0055 419.31 0.0044

100 1298.42 0.0050 576.58 0.0035

125 30

25 627.58 0.0029 202.47 0.0029

50 1180.40 0.0027 396.33 0.0027

75 1617.52 0.0018 578.22 0.0018

100 2398.37 0.0015 719.72 0.0015

150 35

25 699.08 0.0030 243.85 0.0011

50 1295.98 0.0028 518.05 0.0011

75 1968.03 0.0022 788.95 0.0010

100 3254.45 0.0018
1034.6

1
0.0010

It is shown that for the localization strategies, in all cases

(the number of the unknown (target) nodes and the number of
the main (anchors) nodes), increasing in iteration leads to a
reduction in localization error, but an increase in the number
of localizations and computation time. This seems to cover
the goal, as more iterations equal more calculations and take
longer to complete. On the contrary, the greater the number
of actions, the more likely we are to reach a better solution.
As a result, there are more localized nodes and the
localization error value that explains the location error (E_L)
for relation between these main and unknown nodes.
However, as the number of targets and anchors increases, it
turns out that DFT outperform COA in this area. Regard to
the computation time, it was observed that increase number
for both target (un known) and anchor (main) nodes increases
time of computing for the whole localization’s schemes. But
still: Compared with COA, DFT's computation time is better.
The next two figures show schematic diagrams of
experiments conducted at different scales.

Fig. 7. The mean localization error of the localization algorithms across

many deployments of wireless sensor networks

142

Fig. 8. The computation time of various algorithms in various Wireless

Sensor Network configurations

VII. CONCLUSION

Precise node placement is a major challenge for many
WSN adoption applications. In this work, the node
localization problem was approached as an optimization
problem, and a node localization technique was developed
using the Flow Direction Algorithm and Crayfish
Optimization Algorithm, two unique bioinspired algorithms.
The proposed schemes have been executed and checked on
many WSN installations with different numbers of unknown
and main nodes. Additionally, the suggested schemes have
been compared in terms of time of localization and
localization error. Experimental findings show that, with
respect to the different performance criteria, the Flow
Direction Algorithm performs better than the other
localization scheme.

REFERENCES

[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network
survey,” Comput. networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[2] M. Khamees, A. Albakry, and K. Shaker, “Multi-objective feature
selection: Hybrid of salp swarm and simulated annealing approach,”
in International conference on new trends in information and
communications technology applications, 2018, pp. 129–142.

[3] M. Khamees and A. A.-B. Rashed, “Hybrid SCA-CS optimization
algorithm for feature selection in classification problems,” in AIP
conference proceedings, 2020, vol. 2290, no. 1.

[4] X. Wang, Y. Liu, Z. Yang, K. Lu, and J. Luo, “Robust component-
based localizationin sparse networks,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 5, pp. 1317–1327, 2013.

[5] S. Salari, S. Shahbazpanahi, and K. Ozdemir, “Mobility-aided
wireless sensor network localization via semidefinite programming,”
IEEE Trans. Wirel. Commun., vol. 12, no. 12, pp. 5966–5978, 2013.

[6] B.-F. Wu and C.-L. Jen, “Particle-filter-based radio localization for
mobile robots in the environments with low-density WLAN APs,”
IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6860–6870, 2014.

[7] C. Wu, Z. Yang, and Y. Liu, “Smartphones based crowdsourcing for
indoor localization,” IEEE Trans. Mob. Comput., vol. 14, no. 2, pp.
444–457, 2014.

[8] Z. Chaczko and F. Ahmad, “Wireless sensor network based system
for fire endangered areas,” in Third International Conference on
Information Technology and Applications (ICITA’05), 2005, vol. 2,
pp. 203–207.

[9] B. Jankuloska, M. Zahariev, A. Mateska, V. Atanasovski, and L.
Gavrilovska, “Traffic regulations monitoring using vsns,” in 17th
Telecommunication forum (TELFOR), 2009, pp. 1474–1477.

[10] N. R. Council, Grand challenges in environmental sciences. National
Academies Press, 2001.

[11] N. B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller,
“Anchor-free distributed localization in sensor networks,” in
Proceedings of the 1st international conference on Embedded
networked sensor systems, 2003, pp. 340–341.

[12] A. Coluccia and F. Ricciato, “RSS-based localization via Bayesian
ranging and iterative least squares positioning,” IEEE Commun. Lett.,
vol. 18, no. 5, pp. 873–876, 2014.

[13] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in
wireless networks,” Proc. IEEE, vol. 97, no. 2, pp. 427–450, 2009.

[14] P. Oğuz-Ekim, J. P. Gomes, J. Xavier, M. Stošić, and P. Oliveira, “An
angular approach for range-based approximate maximum likelihood
source localization through convex relaxation,” IEEE Trans. Wirel.
Commun., vol. 13, no. 7, pp. 3951–3964, 2014.

[15] R. Tan, Y. Li, Y. Shao, and W. Si, “Distance mapping algorithm for
sensor node localization in WSNs,” Int. J. Wirel. Inf. Networks, vol.
27, pp. 261–270, 2020.

[16] D. Chandirasekaran and S. Sugumaran, “A REAL TIME-BASED
OPTIMIZED NODE LOCALIZATION TECHNIQUE FOR
WIRELESS SENSOR NETWORKS,” J. Electr. Eng. Technol., vol.
11, no. 8, pp. 62–73, 2020.

[17] S. Messous, H. Liouane, O. Cheikhrouhou, and H. Hamam,
“Improved recursive DV-hop localization algorithm with RSSI
measurement for wireless sensor networks,” Sensors, vol. 21, no. 12,
p. 4152, 2021.

[18] R. Khanna and A. Kumar, “Artificial intelligence applications for
target node positions in wireless sensor networks using single mobile
anchor node,” Comput. Ind. Eng., vol. 167, p. 107998, 2022.

[19] W. Liu, X. Luo, G. Wei, and H. Liu, “Node localization algorithm for
wireless sensor networks based on static anchor node location
selection strategy,” Comput. Commun., vol. 192, pp. 289–298, 2022.

[20] Y. Cao and J. Xu, “DV-Hop-based localization algorithm using
optimum anchor nodes subsets for wireless sensor network,” Ad Hoc
Networks, vol. 139, p. 103035, 2023.

[21] D. J. Bahadur and L. Lakshmanan, “A novel method for optimizing
energy consumption in wireless sensor network using genetic
algorithm,” Microprocess. Microsyst., vol. 96, p. 104749, 2023.

[22] R. Annapurna and A. C. Sudhir, “Multi-population Firefly Algorithm
Based Node Deployment in Underwater Wireless Sensor Networks,”
Wirel. Pers. Commun., vol. 130, no. 1, pp. 635–649, 2023.

[23] A. Tharwat, E. H. Houssein, M. M. Ahmed, A. E. Hassanien, and T.
Gabel, “MOGOA algorithm for constrained and unconstrained multi-
objective optimization problems,” Appl. Intell., vol. 48, pp. 2268–
2283, 2018.

[24] A. G. Hussien, E. H. Houssein, and A. E. Hassanien, “A binary whale
optimization algorithm with hyperbolic tangent fitness function for
feature selection,” in 2017 Eighth international conference on
intelligent computing and information systems (ICICIS), 2017, pp.
166–172.

[25] A. Kouba, A. Petrusek, and P. Kozák, “Continental-wide distribution
of crayfish species in Europe: update and maps,” Knowl. Manag.
Aquat. Ecosyst., no. 413, p. 5, 2014.

[26] H. Jia, H. Rao, C. Wen, and S. Mirjalili, “Crayfish optimization
algorithm,” Artif. Intell. Rev., vol. 56, no. Suppl 2, pp. 1919–1979,
2023.

[27] Z. Liao, Z. Chen, and S. Li, “Parameters extraction of photovoltaic
models using triple-phase teaching-learning-based optimization,”
IEEE Access, vol. 8, pp. 69937–69952, 2020.

[28] S. Carbas, A. Toktas, and D. Ustun, Nature-inspired metaheuristic
algorithms for engineering optimization applications. Springer, 2021.

[29] H. Jia, X. Zhou, J. Zhang, L. Abualigah, A. R. Yildiz, and A. G.
Hussien, “Modified crayfish optimization algorithm for solving
multiple engineering application problems,” Artif. Intell. Rev., vol.
57, no. 5, p. 127, 2024.

[30] N. Covic and B. Lacevic, “Wingsuit flying search—A novel global
optimization algorithm,” IEEE Access, vol. 8, pp. 53883–53900,
2020.

[31] L. Wang and L. Li, “An effective differential evolution with level
comparison for constrained engineering design,” Struct. Multidiscip.
Optim., vol. 41, pp. 947–963, 2010.

