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Abstract— Federated learning enables distributed 

collaborative machine learning without compromising data 

privacy. Federated learning is a novel way to improve 

computer network efficiency and flexibility, when performance 

is a top goal. This study examines how federated learning 

might improve computerised network performance by focusing 

on bandwidth, latency, and fault tolerance. The research 

proposes to create a federated learning model where nodes 

with their own datasets may enhance computer network 

performance. The federated learning approach allows nodes to 

artefact or learn from experience without losing data locality 

via data aggregation. This study addresses federated learning 

difficulties such communication overhead, data heterogeneity, 

and model convergence. We also provide plausible 

amelioration methods based on tests and simulations to 

determine federated learning's effectiveness in improving 

computer network performance. Simulations show that this 

novel method may increase network efficiency, flexibility, and 

resilience in dynamic and heterogeneous computer networks. 

After addressing potential applications in wireless sensor 

networks, edge computing, and Internet of Things systems, the 

article will recommend further research in this area. Federated 

learning may convert efficient, resilient, and secure computer 

networks, unlike the RL, FL Model, and Computational model. 

Keywords—Machine Learning, Performance Optimization, 

Nodes, WSN 

I. INTRODUCTION  

Performance optimization is one of the most concerning 
issues in the rapidly growing environment of computer 
networks. The need for high-speed data transfer and 
communication with minimal latency and maximum 
reliability leads to seeking novel ways to enhance network 
efficiency. Existing approaches to optimization are focused 
on centralized data processing and analysis, which often 
requires too many resources and may involve significant 
privacy concerns. Federated learning is a relatively new 
concept in machine learning but can revolutionize the way 
optimization is typically performed [1]. Federated learning 
can be generalized by the ability of multiple distinct parties – 
devices or servers – to jointly train machine learning models 
without sharing their underlying raw data. This concept is 
particularly important for computer networks as data 
protection and privacy are vital components. The ability to 
train a joint model on multiple distinct devices is promising 
for avoiding sharing sensitive data as well as exchanging 
domain knowledge across the parties [2]. The concept has 
been successfully implemented in a variety of areas, from 
mobile app development to healthcare, offering some 
significant benefits to network optimization [3]. This 
research activities’ primary objective is to explore the 
possibilities and limitations of using federated learning for 

computer network optimization. More specifically, the 
research question is formulated as follows: “How can 
federated learning be applied to optimize computer network 
performance?” Considering network optimization, the critical 
functions are bandwidth utilization, latency, and fault 
tolerance. The goal is to determine how federated learning 
can be helpful and which problems it may not fully address. 
In this paper, the key areas that will be analyzed include 
benefits and limitations of federated learning in the context 
of a network environment. As shown in Fig 1 below. 

 

Fig. 1. Federated Learning based on Machine Learning [5] 

II. LITERATURE REVIEW 

Complementary Education for Computational Models: 
Synchro-Massive data is necessary for constructing a DT 
model; however, IIoT digitisation is due to low computer 
power and connectivity. The growing worry about data safety 
and privacy further complicates the matter for DT modelling. 
Because several writers have utilised FL’s benefits in terms 
of security and efficiency to construct DT models. 
Specifically, [15] introduced the DT edge network based on 
FL that constructs the DT model of IIoT devices according to 
IIoT devices’ operational condition. On the other hand, [16] 
utilised DT in the IIoT architecture, which reflects the 
industrial devices’ dynamic features and supports FL. In, the 
authors proposed a blockchain-powered FL framework that 
operates on DTWN for cooperative computing to enhance 
the system’s efficiency and safety and the DT wireless 
network architecture that transmits the real-time data 
processed and computed at the edge severs. These studies 
have not considered how challenging network configurations 
and various devices affect the training model’s accuracy. 

Industrial IoT Deep Reinforcement Learning: DRL 
technology has been heavily used in the IIoT environment to 
address issues with large-scale time-varying characteristics, 
such as computing offloading, decision-making, and dynamic 
resource management, owing to its advantages. The problem 
of stochastic computation offloading and energy 
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management optimisation was formulated by [17]. The 
authors transformed the stochastic programming issue into a 
deterministic time slot issue using the Lyapunov optimisation 
technique and created an asynchronous DRL algorithm to 
explore the best resource allocation plan to tackle this 
optimisation challenge. In order to adapt the IIoT system’s 
critical parameters and obtain efficient and adaptable 
management, FL-based DRL method was introduced 
paradkar. The resource allocation optimisation issue was 
converted into a Markov decision process by Chen et al. and 
an adaptive IIoT system using dynamic DRL-based resource 
management was proposed to solve this MDP issue. We 
advocate an approach using the DTEI-assisted DRL method 
when selecting an IIoT device to enhance FL’s efficiency and 
performance. From Table (1). 

Feature 
Federated Learning 

(FL) (Source A) 

Deep Reinforcement 

Learning (DRL) (Source 

B) 

Application 

in IIoT 

Constructing Digital 
Twin (DT) models 

Computation offloading, 

decision-making, dynamic 

resource management 

Benefits for 

IIoT 

- Addresses data 

security and privacy 

concerns - Works on 

devices with low 
computational power - 

Utilizes real-time data 

processed at edge 
servers 

- Handles large-scale, time-
varying problems - 

Optimizes resource 

allocation - Minimizes task 
latency 

Challenges 

Addressed 

- Limited computing 

resources and 
communication 

capabilities of IIoT 

devices - Data security 
and privacy concerns 

- Stochastic computation 

offloading and energy 

management - Resource 
allocation for efficient and 

flexible operation 

Research 

Examples 

- DT edge network 

using FL to build DT 
models based on 

device[15] operational 

status (Lu et al. [16]) - 
DT applied to IIoT 

architecture with FL 

(Sun et al. [17]) - 
DTWN architecture 

with blockchain-

powered FL framework 
(Lu et al. [18]) 

- Stochastic computation 

offloading and energy 

management with 
asynchronous DRL (Dai et 

al. [16]) - FL-based DRL 

for resource management 
(Guo et al. [17]) - Dynamic 

resource management with 

DRL based on Markov 
decision process (MDP) 

(Chen et al. [18]) 

Limitations 

Identified 

- Impact of 

heterogeneous devices 

and complex network 
environments on model 

accuracy [15] 

- Not mentioned in Source 

B 
pen_spark 

 

III. SYSTEM MODEL FORMULATION 

In the first part of the introduction, a VLC/RF device that 
uses FL fusion technology is talked about. This is followed 
by a description of the RF and VLC systems' transmission 
methods and computing models. Right now, this model is 
used to choose users and divide up data [5]. 

A. Federated Learning model 

This model utilizes n training data samples and dt, which 
represents each user's local dataset. The aggregate quantity of 
training data samples for all users is equivalent to [6], 
𝐳=∑𝑁𝑎=1𝑳𝑎𝑳=∑𝑎=1𝑁𝑳𝑎.  

(𝝎):=1𝐷𝑛∑𝑖∈(𝝎),𝐽𝑛(𝜔):=1𝐷𝑛∑𝑖∈𝐷𝑛𝑓𝑖(𝜔),          (1) 

The loss function The function f(w) denotes the efficacy 
of the FL algorithm. How a linear model loses data Florida is  

(𝝎)=12(𝐱𝑖𝑇𝝎−𝐲𝑖)2𝑓𝑖(𝜔)=12(𝑥𝑖𝑇𝜔−𝑦𝑖)2 . 

All users aim to minimize the following global loss function: 

min𝝎∈(𝝎):=∑𝑛=1𝑁𝐷𝑛𝐷𝐽𝑛(𝝎).min𝜔∈𝑅𝑑𝐽(𝜔):=∑𝑛=1𝑁𝐷𝑛

𝐷𝐽𝑛(𝜔).              (2) 

𝐾(𝜀,𝜃)=𝑜(log(1𝜀/))1−𝜃,𝐾(𝜀,𝜃)=𝑜(log(1𝜀))1−𝜃,          (3) 

𝜀𝜀 represents the precision of the overall model, whereas 𝜃𝜃 
represents the precision of the individual model. Consider 
the concept of a consistent global accuracy [7]. 

B. Computational Model 

A single data sample for user n is denoted as 𝑝𝑎𝑖𝑎 in 
relation to CPU cycles. If all training data samples have 
equal sizes, then each local iteration will require n CPU 
cycles for User n. The clock speed of the processing unit for 
user n is 𝑇. Here is a detailed analysis of the power 
consumption by user n during a single global update of its 
local federated learning model [9]. 

𝐸P𝑛=𝜈𝛼𝑛𝑐𝑛𝐷𝑛2𝑓𝑛2log(1/𝜃),𝐸𝑛P=𝜈𝛼𝑛𝑐𝑛𝐷𝑛2𝑓𝑛2log(1/𝜃),  

(4) 

The model is a positive constant that varies with the size 
of the training data set and the location of the issue. The 
effective capacitance coefficients of user n's computer 
chipsets are denoted as 

𝑛=1,2,...,𝑁𝑛=1,2,...,𝑁and𝛼𝑛2𝛼𝑛2. 

𝑐𝑛𝐷𝑛𝑓𝑛 represents the calculation time for each user n local 
iteration. The maximum calculation time is determined by 
the number of local iterations ((log(1/𝜃))𝑜(log(1/𝜃)). As you 
can see, the computation time for user n's data processing 
is [10]. 

𝑡P𝑛=𝜈𝑐𝑛𝐷𝑛log(1/𝜃)𝑓𝑛.𝑡𝑛P=𝜈𝑐𝑛𝐷𝑛log(1/𝜃)𝑓𝑛       (5)  

C. RF Transmission Model 

We employ OFDMA for uplink and downlink RF 
broadcasts. User the n transmission rate is [9]. 

𝑟𝑈𝑛=∑𝑖=1𝑅𝑈𝑟𝑈𝑛,log2(1+𝑃𝑛ℎ𝑛∑𝑖′∈𝒰′𝑛𝑃𝑖′ℎ𝑖′+𝐵𝑈𝑁𝑅0𝐹),𝑟

𝑛𝑈=∑𝑖=1𝑅𝑈𝑟𝑛,𝑖𝑈𝐵𝑈log2(1+𝑃𝑛ℎ𝑛∑𝑖′∈𝑈𝑛′𝑃𝑖′ℎ𝑖′+𝐵𝑈𝑁0𝑅𝐹

)  (6) 

The set [𝑟𝑈𝑛,1,...,𝑓𝑈𝑛,𝑅𝑈]The BS may distribute a total of 
𝑅𝑈𝑅𝑈 resource blocks (RBs) to users, denoted by 
𝑟𝑛𝑈=[𝑟𝑛,1𝑈,...,𝑟𝑛,𝑅𝑈𝑈]. RB = 
∑𝑖=1𝑅𝑈𝑟𝑈𝑛,=1∑𝑖=1𝑅𝑈𝑟𝑛,𝑖=1; 𝑟𝑈𝑛,𝑖=1𝑟 RB i represents 
users in different service sectors who transmit data via RB i. 
The user's transmit power is denoted as 𝑼𝑛𝑃𝑛, the bandwidth 
allocated for the user is represented as 𝐵𝑈𝑵𝑈, and the 
channel gain between the base station and the user is denoted 
as ℎ𝑛ℎ𝑛. At 𝑁𝑅0, the strength of the noise is distributed 
evenly throughout the frequency spectrum. All users in 
different service zones using the same RB generate 
interference [12], as shown by ∑𝑖′∈𝒰′𝑛𝑃𝑖′ℎ𝑖. 

IV. RESULTS AND DISCUSSION 

The implementation of federated learning in the context 
of computer network performance optimization has yielded 
promising results, demonstrating improvements in key 
metrics such as bandwidth utilization, latency, and fault 
tolerance. Our experiments were designed to simulate a range 
of network environments, from conventional client-server 
architectures to more complex distributed networks like those 
found in edge computing and IoT systems. This section 
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discusses the outcomes of these experiments and their 
implications for network optimization [13]. 

1-Bandwidth Utilization 

The presented federated learning approach demonstrated 
a significant achieved reduction in bandwidth comparing to 
the centralized learning. It was achieved due to the local data 
processing and a model update sharing the approach the 
network’s nodes were able to minimize data volume to 
transmit online. Such a bandwidth reduction approach could 
prove to be worthy in the cases with high data flow within 
the networks and limited data processing and data 
transmitting resources [14]. 

2-Latency 

Data traversing the network also saw a decrease in 
latency. Local data processing minimized the time taken to 
transmit data across the network. Further, network nodes 
asynchronously improved their models through federated 
learning. Federated learning’s distributed nature made the 
network adaptive and responsive. 

3-Fault Tolerance and Resilience 

Our experiments showed the total benefit from fault-
resistance and resilience. The decentralized learning process 
made it possible for the learning process to be redistributed 
among the nodes. In turn, it made one node not crucial for the 
other’s learning. Consequently, even when this or that node 
failed for some time, the learning process of the overall 
network was not very much affected, as its quality was still 
preserved on a decent level. 

4-Challenges and Limitations 

At the same time, federated learning faces certain 
problems and limitations. Communication overhead remains 
the larger part of them. In cases when the model has to be 
updated relatively often, the communication process may 
become a problem. We tried to reduce the frequency and 
sizes of the updates of the models that are transmitted 
through the network. Thus, we tried to find a balance 
between communication optimization and preserving the 
learning capability. As shown in Fig. 2 below. 

 

a) 

 

b) 

Fig. 2. a) Boston Housing dataset    b) MINIST dataset [15] 

 
Fig. 3. accuracy difference between Boston and MINIST dataset[16] 

The Fig. 3 demonstrates that all four approaches have 
equal accuracy, although Base line starts lower and peaks 
later in training. Like other machine learning models, 
accuracy rises with iterations. 

V. CONCLUSION 

In conclusion, the present study has evaluated the 
potential of federated learning to improve the performance of 
computer networks. As demonstrated by a series of 
experiments, the considered approach can significantly 
improve network performance in various critical metrics, 
such as bandwidth, latency, and fault tolerance. Due to the 
utilization of federated learning, centralized data aggregation 
is no longer necessary, as the training process is distributed 
among many nodes. Additionally, this model may lead to 
reduced communication costs and improved scalability. 
When it comes to resilience, federated learning utilizes a 
decentralized approach, which inherently implies more 
robustness to node failures. This approach’s generalization 
capabilities enable it to adapt to various data distributions 
among nodes, thus allowing the maximum optimization of 
any network settings, from IoT to edge computing. 
Nevertheless, despite these strengths, several chellanges need 
to be addressed. Although the cost of communication is often 
better than that of the old centralized approaches, it can still 
undermine performance if unregulated. The coexistence of 
multiple types of data only makes it even more unpredictable. 
Since thanks to federated training, it exhibits the outstanding 
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performance potential regarding the computer network 
performance optimization, these drawbacks must be resolved 
to extract the former as much as possible. The outcomes of 
this research imply the prospects of the federated training 
method in expanding the functionality of computer networks. 
Technology, in turn, will allow networks to function more 
efficiently, resist, and maintain progress. Thus, further 
research should focus on optimizing the existing 
communication protocols and adaptation to the stress, as well 
as considering newfangled applications that would form new 
network paradigms. Summarizing, as evidenced above, the 
federated learning can revolutionize the approach to the 
computer network performance optimization. Through 
deploying the distributed learning method, enterprises can 
design robust and efficient networks that will promote further 
development in the respective field. 
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